

FIVE ESTUARIES OFFSHORE WIND FARM

PRELIMINARY ENVIRONMENTAL INFORMATION REPORT

VOLUME 5, ANNEX 8.2: TRAFFIC AND TRANSPORT TRIP GENERATION AND DISTRIBUTION

Document Reference 004685564-01

Revision A

Date January 2023

Project	Five Estuaries Offshore Wind Farm
Sub-Project or Package	Preliminary Environmental Information Report
Document Title	Volume 5, Annex 8.2: Traffic and Transport Trip
	Generation and Distribution
Document Reference	004685564-01
Revision	A

COPYRIGHT © Five Estuaries Wind Farm Ltd

All pre-existing rights reserved.

This document is supplied on and subject to the terms and conditions of the Contractual Agreement relating to this work, under which this document has been supplied, in particular:

LIABILITY

In preparation of this document Five Estuaries Wind Farm Ltd has made reasonable efforts to ensure that the content is accurate, up to date and complete for the purpose for which it was contracted. Five Estuaries Wind Farm Ltd makes no warranty as to the accuracy or completeness of material supplied by the client or their agent. Other than any liability on Five Estuaries Wind Farm Ltd detailed in the contracts between the parties for this work Five Estuaries Wind Farm Ltd shall have no liability for any loss, damage, injury, claim, expense, cost or other consequence arising as a result of use or reliance upon any information contained in or omitted from this document.

Any persons intending to use this document should satisfy themselves as to its applicability for their intended purpose.

The user of this document has the obligation to employ safe working practices for any activities referred to and to adopt specific practices appropriate to local conditions.

Revision	n Date	Status/Reason for Issue	Originator	Checked	Approved
Α	Jan-23	Final for PEIR	SLR	GoBe	VE OWFL

FIVE ESTUARIES OFFSHORE WIND FARM

Volume 5, Annex 8.2 Trip Generation and Distribution

Prepared for: Five Estuaries Wind Farm Ltd

Document Control				
Document Properties				
Organisation	SLR Consulting			
Project Name	Five Estuaries Onshore Corridor & Substation			
Report Title	Trip Generation and Distribution			
Author(s)	Daniel Moran			
Draft version/final	DRAFT v02			
Document reference				

SLR Ref No: 406.05356.00009

January 2023

BASIS OF REPORT

This document has been prepared by SLR Consulting Limited with reasonable skill, care and diligence, and taking account of the manpower, timescales and resources devoted to it by agreement with GoBe Consultants (the Client) as part or all of the services it has been appointed by the Client to carry out. It is subject to the terms and conditions of that appointment.

SLR shall not be liable for the use of or reliance on any information, advice, recommendations and opinions in this document for any purpose by any person other than the Client. Reliance may be granted to a third party only in the event that SLR and the third party have executed a reliance agreement or collateral warranty.

Information reported herein may be based on the interpretation of public domain data collected by SLR, and/or information supplied by the Client and/or its other advisors and associates. These data have been accepted in good faith as being accurate and valid.

The copyright and intellectual property in all drawings, reports, specifications, bills of quantities, calculations and other information set out in this report remain vested in SLR unless the terms of appointment state otherwise.

This document may contain information of a specialised and/or highly technical nature and the Client is advised to seek clarification on any elements which may be unclear to it.

Information, advice, recommendations and opinions in this document should only be relied upon in the context of the whole document and any documents referenced explicitly herein and should then only be used within the context of the appointment.

CONTENTS

1.0	INTRODUCTION
2.0	SOURCE OF DATA6
3.0	MAXIMUM DESIGN SCENARIO (MDS)7
3.1	Approach7
3.2	Trip Generation and Distribution8
3.2.1	Trip Generation Parameters
3.2.2	Daily Trip Generation9
3.2.3	Peak Hour Trip Generation9
3.2.4	Traffic Distribution Parameters
3.2.5	Daily Trip Generation per Highway Link
3.2.6	Trip Generation per Highway Link (Peak Hours)
DO	CUMENT REFERENCES
TABLI	ES
Table	2-1 ECC Route Sections 6
Table	3-1 Maximum HGV Trip Generation per ECC Route Section
Table	3-2 Maximum Number of Employees per ECC Route Section
Table	3-3 Daily trip generation summary9
Table	3-4 Peak hour trip generation summary (AM or PM peak)
Table	3-5 Trip Distribution Scenarios
Table	3-6 Maximum Two-Way Daily Vehicle Movements on Each Highway Link (Scenario 1) 11
Table	3-7 Maximum Two-Way Daily Vehicle Movements on Each Highway Link (Scenario 2) 12
Table	3-8 Maximum Two-Way Daily Vehicle Movements on Each Highway Link (Scenario 3) 12
Table	3-9 Maximum Two-Way Peak Hour Vehicle Movements on Each Highway Link (Scenario 1). 12
Table	3-10 Maximum Two-Way Peak Hour Vehicle Movements on Each Highway Link (Scenario 2)13
Table	3-11 Maximum Two-Way Daily Vehicle Movements on Each Highway Link (Scenario 3) 13

SLR Ref No: 406.05356.00009 January 2023

APPENDICES

Appendix 01 - Trip Generation Data – ECC Route Sections

Appendix 02 - Trip Generation Data – Substation

Appendix 03 Maximum Daily VE Traffic Flows (Personnel)

Appendix 04 Maximum Daily VE Traffic Flows (HGVs)

Appendix 05 Maximum Daily VE Traffic Flows (Total)

Appendix 06 Maximum Peak Hour VE Traffic Flows (Personnel)

Appendix 07 Maximum Peak Hour VE Traffic Flows (HGVs)

Appendix 08 Maximum Peak Hour VE Traffic Flows (Total)

Definition of Acronyms

Acronym	Definition
AADT	Annual Average Daily Traffic
ATC	Automatic Traffic Count
СТМР	Construction Traffic Management Plan
DCO	Development Consent Order
DfT	Department for Transport
ECC	Export Cable Corridor
EIA	Environmental Impact Assessment
EACN	East Anglia Connection Node
ES	Environmental Statement
ETG	Expert Topic Group
HDD	Horizontal Directional Drilling
HGV	Heavy Goods Vehicle
JTC	Junction Turning Count
LRN	Local Road Network
MfS	Manual for Streets
NGET	National Grid Electricity Transmission
NH	National Highways
NSIP	Nationally Significant Infrastructure Projects
OnSS	Onshore Substation
PEIR	Preliminary Environmental Information Report
PIA	Personal Injury Accident
PINS	The Planning Inspectorate
PRoW	Public Right of Way
SCL	Sunshine Coast Line
SRN	Strategic Road Network
SSA East	Substation Search Area East
SSA West	Substation Search Area West
тсс	Temporary Construction Compounds
VE	Five Estuaries Offshore Wind Farm
WTG	Wind Turbine Generators

1.0 Introduction

1. This report is a technical annex (Volume 5, Annex 8.2) of Volume 3, Chapter 8: Traffic and Transport, of the Preliminary Environmental Information Report (PEIR).

SLR Ref No: 406.05356.00009

January 2023

- 2. The report sets out the trip generation and distribution (parameters and results) associated with the Maximum Design Scenario (MDS) used for the assessment of the likely significant effects associated with the onshore elements of the Five Estuaries Offshore Wind Farm (VE) on traffic and transport.
- 3. The MDS sets out the maximum design parameters of the combined project assets that result in the greatest potential for change in relation to each impact assessed.

2.0 Source of Data

- 4. The project design consultant has derived the trip generation forecasts for the construction phase of VE across the anticipated 18 month construction programme (see Figure 2 of Volume 3, Chapter 1: Onshore Project Description based on the forecast construction traffic and routeing associated with the Onshore Substation (OnSS) options (SSA East and SSA West)
- 5. The onshore ECC includes some optionality in routeing and crossing technology; however, this optionality does not alter trip generation forecasts or vehicle routeing.
- 6. The data and details of how the construction traffic forecasts have been calculated is provided in Appendix 01 and includes a breakdown of the anticipated daily number of two-way movements (arrivals and departures), employee and Heavy Goods Vehicle (HGV) movements per month, for the Route Sections that comprise the onshore ECC as set out in **Table 2-1**.

Table 2-1 ECC Route Sections

Section	Starts	Ends		
Beach access (if required)	N/A	N/A		
Landfall HDD	Transition Jointing Bay (TJB) north of Frinton Golf Course	N/A		
Section 1	Landfall	Railway		
Section 2	Railway	B1033 Thorpe Road		
Section 3	B1033 Thorpe Road	B1035 Tendring Road		
Section 4	B1035 Tendring Road	A120		
Section 5	A120	VE Substation		
400kV Route	VE OnSS	National Grid Electricity Transmission (NGET) Substation		
Unlicensed Works at NGET Substation	NGET Substation	NGET Substation		

7. The data provided in **Appendix 01** does not include the anticipated vehicular trip generation associated with the construction of the OnSS, which is considered separately and is provided at **Appendix 02**

3.0 Maximum Design Scenario (MDS)

3.1 Approach

- 8. The approach taken to derive the Maximum Design Scenario (MDS) is to establish the peak forecast vehicle movements to and from each ECC Route Section/ OnSS across the anticipated 18 month construction programme, based on HGVs and workforce vehicle movements independently, which would result in a robust assessment of vehicular impact on the Local Road Network (LRN) and Strategic Road Network (SRN).
- 9. **Table 3-1** below sets out a summary of the maximum two-way HGV daily trip generation for each of the ECC Route Sections and OnSS and the corresponding month. It also shows the difference between the number of HGVs in the month for the total across all Route Sections.

Table 3-1 Maximum HGV Trip Generation per ECC Route Section

ECC Route Section	Maximum daily HGVs (2-way)	Month	Peak Month 18 (overall) Maximum daily HGVs (2-way)	Difference
Landfall/ 1	90	8	77	13
2	62	16	0	62
3	107	18	107	0
4	106	18	106	0
5	106	18	106	0
Substation	75	All	75	0
Total	546	Various	471	75

- 10. As **Table 3-1** shows, the assessment based on the maximum HGVs to each ECC Route Section is 75 two-way HGV movements greater than the total based on the peak month overall.
- 11. The same exercise has been undertaken for the anticipated workforce, as set out in **Table 3-1**.

Table 3-2 Maximum Number of Employees per ECC Route Section

ECC Route Section	Maximum daily employees (2-way)	Month of VE construction programme	Overall peak month of construction programme (Month 7) Maximum daily employees (2-way)	Difference
Landfall/ 1	174	9	157	17
2	97	13	73	24
3	181	6/7	181	0
4	159	9	139	20
5	159	9	152	7
Substation	35	All	35	0
Total	805	All	737	68

- 12. As **Table 3-1** shows, the assessment based on the maximum number of employees to each ECC Route Section is 68 two-way employees movements greater than the total based on the peak month overall.
- 13. Given the above, the assessment of construction traffic for VE has been undertaken based on a set of robust forecasts.

3.2 Trip Generation and Distribution

3.2.1 Trip Generation Parameters

- 14. In order to undertake an assessment of the likely significant effects of the MDS identified for the construction phase of VE, a number of trip generation parameters have been identified, which have been discussed with Expert Topic Group (ETG) members as part of the Evidence Plan process. The assumptions have been informed by the evolving project design parameters and are considered suitable in order to provide a robust but reasonable forecast of the likely traffic effects of VE during the construction period.
- 15. The key trip generation parameters are:
 - Core working hours 07:00 to 19:00, (some activities, such as HDD may require continuous 24 hours working for short periods);
 - The construction workforce would arrive and depart in cars or light goods vehicles (LGVs);
 - Construction workforce arrival and departures:
 - 80% arriving before 07:00 and leaving after 18:15 (April to October), or before 16:15
 (November to March), based on approximate daylight hours in Essex; and
 - 20% arriving between 07:00 and 09:00 and leaving between 16:15 and 18:15 (the peak hour period identified on the highway network
 - Core HGV deliveries 07:00 to 19:00;
 - The two-way HGV movements assumes a vehicle arriving at a construction access and TCC, uploading and departing at the same access;
 - The HGV movements along each of the haul roads is not known and is not specifically assessed as part of Volume 3, Chapter 8. The VE construction traffic data that has been provided to inform Volume 3, Chapter 3.10: Noise and Vibration, for the assessment of receptors along the haul roads, it has assumed, as a worst case, that all HGVs arriving at a construction access would also travel along the haul roads once within the site;
 - Car occupancy 1.5 people per car, which is considered a conservative estimate, given core working
 hours will be the same for the majority of workers, who may frequent the same local
 accommodation and wish share travel costs; and
 - The two-way employee movements assumes a vehicle arriving at a construction access and TCC in the morning and leaving in the evening, as per the assumptions above.

3.2.2 Daily Trip Generation

16. The maximum daily trip generation for HGVs and employee vehicle movements based on **Table 3-1** and **Table 3-2** is summarised in **Table 3-3**, which also shows the minimum and average vehicle movements as a comparison.

Table 3-3 Daily trip generation summary

ECC Route	Т	otal vehic	cles	HGVs Emplo			Employee		
Section	Min	Max	AM	PM	Max	Average	Min	Max	Average
Landfall/ 1	52	206	145	17	90	65	35	116	80
2	0	127	68	0	62	25	0	65	44
3	48	228	139	14	107	66	34	121	73
4	50	212	131	16	106	63	34	106	68
5	53	212	140	19	106	68	34	106	72
Substation	105	105	105	75	75	75	30	30	30

3.2.3 Peak Hour Trip Generation

17. The forecast vehicular traffic associated with VE during the morning and evening peak hours on the highway network is summarised in **Table 3-4** based on the assumptions set out in **Section 3.2.1**.

Table 3-4 Peak hour trip generation summary (AM or PM peak)

ECC Route	Total v	ehicles	HG	iVs	Employee	e vehicles
Section	AM	PM	AM	PM	AM	PM
Landfall/ 1	20	20	12	12	8	8
2	17	17	12	12	5	5
3	21	21	12	12	9	9
4	21	21	12	12	9	9
5	21	21	12	12	9	9
Substation	9	9	3	3	6	6

3.2.4 Traffic Distribution Parameters

- 18. In terms of the traffic distribution parameters, all HGV traffic associated with the construction phase of VE is assumed to arrive from and depart to the Junction 29 of the A12 (with the exception of Abnormal Indivisible Loads (AILs), which are assumed might arrive from the Port of Harwich via the A120 east.
- 19. For the purposes of the assessment HGVs and construction employee vehicles will use the same routes to ensure a robust assessment along these highway links and junctions. However, in reality, depending on the proportion of local employees and the availability of local accommodation for workers who do not live in the local area, the distribution of construction worker vehicles is likely to be spread across the wider network, reducing the level of likely impact across the LRN and SRN.
- 20. Three assessment scenarios have been considered to take account of the maximum likely impact on all highway links in the study area, for the OnSS options.
- 21. The assessment scenarios are:

- Scenario 1: SSA East/ ECC Route Section 5 via B1035 Clacton Road;
- Scenario 2: SSA East or SSA West/ ECC Route Section 5 via Bentley Road; and
- Scenario 3: SSA West via Waterhouse Lane and the B1209

Table 3-5 Trip Distribution Scenarios

TCC	ECC route section	Access route	Distribution (%)	
			Scenario 1	Scenario 2	Scenario 3
1,2 and 3	1	A12, A120, A133, B1027 Valley Road/ Frinton Road, B1032 Clacton Road	100	100	100
4	2	A12, A120, A133, B1033, B1441 Weeley Road/ Clacton Road, B1414 Harwich Road/ Station Road, B1033 Frinton Road/ Thorpe Road	100	100	100
5	3	A12, A120, A133, B1033, B1441 Weeley Road/ Clacton Road, B1414 Harwich Road/ Station Road, B1033 Frinton Road/ Thorpe Road, B1034 Sneating Hall Lane	50	50	50
6	3	A12, A120, A133, B1033 Colchester Road, B1035 Tendring Road	50	50	50
7	4	A12, A120, A133, B1033 Colchester Road, B1035 Tendring Road, B1035 Thorpe Road	50	50	50
8	4	A12, A120, B1035	50	50	50
9a, 9b and 9c	5	A12, A120, B1035	100	0	0

TCC	ECC route section	Access route	Distribution (%)		
			Scenario 1	Scenario 2	Scenario 3
	SSA East	Clacton Road	100	0	0
10a, 10b and 10c	5	A12, A120, Bentley	100	100	100
	SSA East	Road	0	100	0
	SSA West		100	100	0
n/a	SSA West	A12, A120, Harwich Road, B1029, Waterhouse Lane	0	0	100

22. It should be noted that the assessment of maximum traffic flow impacts as a result of VE results in some links shown with no traffic flows assigned; however, this is unlikely to be the case in reality. ie. Scenario 1 tests the maximum on the B1035 Clacton Road, with none assigned to the B1035 Clacton Road in Scenario 2, which tests the maximum traffic flows on Bentley Road.

3.2.5 Daily Trip Generation per Highway Link

- 23. The maximum daily two-way vehicular trip generation (total, LGV and HGV) on each highway link based on assessment scenarios 1 to 3 is shown in **Table 3-6** to Error! Reference source not found.
- **24. Table** 3-8 and in **Appendix 03, 04 and 05.**

Table 3-6 Maximum Two-Way Daily Vehicle Movements on Each Highway Link (Scenario 1)

Reference	Highway Link	Maximum two-way						
		HGV	LGV	Total				
1	A12 north of A120	272	305	577				
2	A12 south of A120	272	305	577				
3	A120 between A12 and A133	546	610	1,156				
4	A120 between the A133 and Harwich Road	234	204	438				
5	A120 between Harwich Road and Bentley Road	234	204	438				
6	A120 between Bentley Road and B1035	234	174	408				
8/9	A133 between B1033 and B1027	90	116	206				
10/ 42	B1027 Valley Road	90	116	206				
11	B1032 Clacton Road	90	116	206				
12	B1033 Colchester Road (west of B1441)	222	290	512				
13	B1441 Clacton Road	116	174	290				
14	B1414 Harwich Road	116	174	290				
15	B1033 Frinton Road	116	174	290				
16	B1033 Colchester Road (east of B1441)	107	116	223				

Reference	Highway Link	Maximum two-way							
		HGV	LGV	Total					
17	B1035 Tendring Road	107	116	223					
18	B1035 Thorpe Road	53	58	111					
19	B1035 (south of A120)	53	58	111					
20	B1035 Clacton Road	181	146	327					
21	Bentley Road	0	0	0					
22	B1027 Frinton Road	90	116	206					
43	A133 between A120 and B133	312	406	718					

Table 3-7 Maximum Two-Way Daily Vehicle Movements on Each Highway Link (Scenario 2)

Reference	Highway Link (different to Scenario 1)	Maximum two-way						
		HGV	LGV	Total				
20	B1035 Clacton Road	0	0	0				
21	Bentley Road	181	146	327				

Table 3-8 Maximum Two-Way Daily Vehicle Movements on Each Highway Link (Scenario 3)

Reference	Highway Link (different to Scenario 1)	Maximum two-way						
		HGV	LGV	Total				
20	B1035 Clacton Road	0	0	0				
21	Bentley Road	106	116	222				
37	Waterhouse Lane	75	30	105				
38	B1029	75	30	105				

3.2.6 Trip Generation per Highway Link (Peak Hours)

25. The maximum daily two-way vehicular trip generation (total, LGV and HGV) in the morning or evening peak hours on each highway link based on assessment scenarios 1 to 3) is shown in **Table 3-9** to **Table 3-11** and in **Appendix 06, 07 and 08.**

Table 3-9 Maximum Two-Way Peak Hour Vehicle Movements on Each Highway Link (Scenario 1)

Reference	Highway Link	Maximum two-way HGV LGV Total 23 31 54		
		HGV	LGV	Total
1	A12 north of A120	23	31	54

Reference	Highway Link	Maximum two-way						
		HGV	LGV	Total				
2	A12 south of A120	23	31	54				
3	A120 between A12 and A133	45	61	106				
4	A120 between the A133 and Harwich Road	19	20	39				
5	A120 between Harwich Road and Bentley Road	19	20	39				
6	A120 between Bentley Road and B1035	19	17	36				
8/9	A133 between B1033 and B1027	8	12	20				
10/42	B1027 Valley Road	8	12	20				
11	B1032 Clacton Road	8	12	20				
12	B1033 Colchester Road (west of B1441)	19	29	48				
13	B1441 Clacton Road	10	17	27				
14	B1414 Harwich Road	10	17	27				
15	B1033 Frinton Road	10	17	27				
16	B1033 Colchester Road (east of B1441)	9	12	21				
17	B1035 Tendring Road	9	12	21				
18	B1035 Thorpe Road	4	6	10				
19	B1035 (south of A120)	4	6	10				
20	B1035 Clacton Road	15	15	30				
21	Bentley Road	0	0	0				
22	B1027 Frinton Road	8	12	20				
43	A133 between A120 and B133	26	41	67				

Table 3-10 Maximum Two-Way Peak Hour Vehicle Movements on Each Highway Link (Scenario 2)

Reference	Highway Link (different to Scenario 1)	Maximum two-way						
		HGV	LGV	Total				
20	B1035 Clacton Road	0	0	0				
21	Bentley Road	15	15	30				

Table 3-11 Maximum Two-Way Peak Hour Vehicle Movements on Each Highway Link (Scenario 3)

Reference	Highway Link (different to Scenario 1)	Maximum two-way					
		HGV	LGV	Total			
20	B1035 Clacton Road	0	0	0			
21	Bentley Road	9	12	21			

Reference	Highway Link (different to Scenario 1)	Maximum two-way						
		HGV	LGV	Total				
37	Waterhouse Lane	6	3	9				
38	B1029	6	3	9				

- 26. As **Table 3-9** to **Table 3-11** and the traffic flow diagram **Appendix 06** show, even with a robust estimate of 20% of construction workers arriving at or departing from the construction sites during highway peak hours, the maximum number of two-way vehicle movements at a junction on the SRN is forecast to be 40 at the A120/ Harwich Road junction.
- 27. Whilst it is forecast that there would be 106 two-way vehicle movements on the A120 between the A12 and the A133 (as shown in Table 3-9), these vehicles would be distributed across four slip roads or free-flow links at the A12 Junction 29, likely resulting in fewer than 30 two-way vehicle movements on each and therefore a negligible impact. Also, the A120/ A133 interchange is a free flow link and therefore, there would be no specific capacity impacts at this junction.
- 28. The maximum number of two-way vehicle movements at a junction on the LRN is forecast to be 67 on the A133 at the B133 junction (Weeley roundabout). The number of two-way VE constriction vehicles at all other junctions on the LRN in the study area is less than 30.
- 29. Given the robust assessment parameters (car occupancy, proportion of personnel movements in the peak hours and the distribution adopted), SLR does not consider VE construction traffic would have a material impact at the junctions; and given the actual number of vehicle movements associated with the construction of VE would not be confirmed until Principal contractors are identified, it is not considered necessary to undertake any junction capacity assessments at PEIR or ES stages.

Trip Generation Data – ECC Route Sections

Average Total Two-Way Vehicle Movements Per Day

Including miscellaneous allowances

		Months																
Route Section	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Section 1	97	144	135	168	227	235	246	253	250	236	186	195	156	193	154	150	150	157
Section 2	98	89	121	106	106	91	90	90	76	39	106	97	127	107	133	142	0	0
Section 3	115	181	181	219	247	264	263	215	199	161	151	136	134	91	137	100	178	187
Section 4	115	170	155	105	183	209	188	202	220	224	206	115	113	165	135	98	177	186
Section 5	115	163	123	208	200	234	233	218	234	226	209	116	161	134	137	98	177	186
400kV Works	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Unlicensed Works at																		
Substation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(Note - Programme of unli	censed works	shown is inc	dicative only	. Timing of	unlicensed	works deper	ndant on Pro	ject Substa	tion and NG	Substation	Programme	etc)						
Total	540	747	715	806	963	1033	1020	978	979	886	858	659	691	690	696	588	682	716

Overall	Minimum	Maximum	Average
Section 1	97	253	185
Section 2	0	142	90
Section 3	91	264	176
Section 4	98	224	165
Section 5	98	234	176
400kV Works	0	0	0
Unlicensed Works Substation	0	0	0
Total	540	1033	792

Average Total Two-Way HGV Movements Per Day

Including miscellaneous allowances

moraama miseemanee as and	ma <u>nees</u>																	
		Months																
Route Section	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Section 1	44	64	60	73	86	89	89	90	76	73	45	49	17	56	41	73	70	77
Section 2	45	36	39	22	18	18	17	19	10	12	26	13	30	23	53	62	0	0
Section 3	62	99	93	95	79	83	82	52	49	40	41	43	41	14	53	49	98	107
Section 4	62	90	80	41	73	77	49	56	61	70	63	18	16	72	51	47	97	106
Section 5	62	83	48	98	76	82	81	72	75	72	66	19	48	41	53	47	97	106
400kV Works	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Unlicensed Works at																		
Substation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(Note - Programme of unli	censed works	shown is in	dicative only	. Timing of	unlicensed	works depe	ndant on Pro	oject Substa	tion and NG	Substation	Programme	e etc)						
Total	275	372	320	329	332	349	318	289	271	267	241	142	152	206	251	278	362	396

Overall	Minimum	Maximum	Average
Section 1	17	90	65
Section 2	0	62	25
Section 3	14	107	66
Section 4	16	106	63
Section 5	19	106	68
400kV Works	0	0	0
Unlicensed Works at			
Substation	0	0	0
Total	142	396	286

Average Total Employees Two Way Movements per day

	Months																	
Route Section	1	2	3	4	5	6	7	8	9	10	11	12	13	14	15	16	17	18
Section 1	53	80	75	95	141	146	157	163	174	163	141	146	139	137	113	77	80	80
Section 2	53	53	82	84	88	73	73	71	66	27	80	84	97	84	80	80	0	0
Section 3	53	82	88	124	168	181	181	163	150	121	110	93	93	77	84	51	80	80
Section 4	53	80	75	64	110	132	139	146	159	154	143	97	97	93	84	51	80	80
Section 5	53	80	75	110	124	152	152	146	159	154	143	97	113	93	84	51	80	80
400kV Works	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
Unlicensed Works at Substation	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0	0
(Note - Programme of unlicensed works shown is indicative only. Timing of unlicensed works dependant on Project Substation and NG Substation Programme etc)																		
Total	265	375	395	477	631	684	702	689	708	619	617	517	539	484	445	310	320	320

Overall	Minimum	Maximum	Average
Section 1	53	174	120
Section 2	0	97	65
Section 3	51	181	110
Section 4	51	159	102
Section 5	51	159	108
400kV Works	0	0	0
Unlicensed Works at Substation	0	0	0
Total	265	708	505

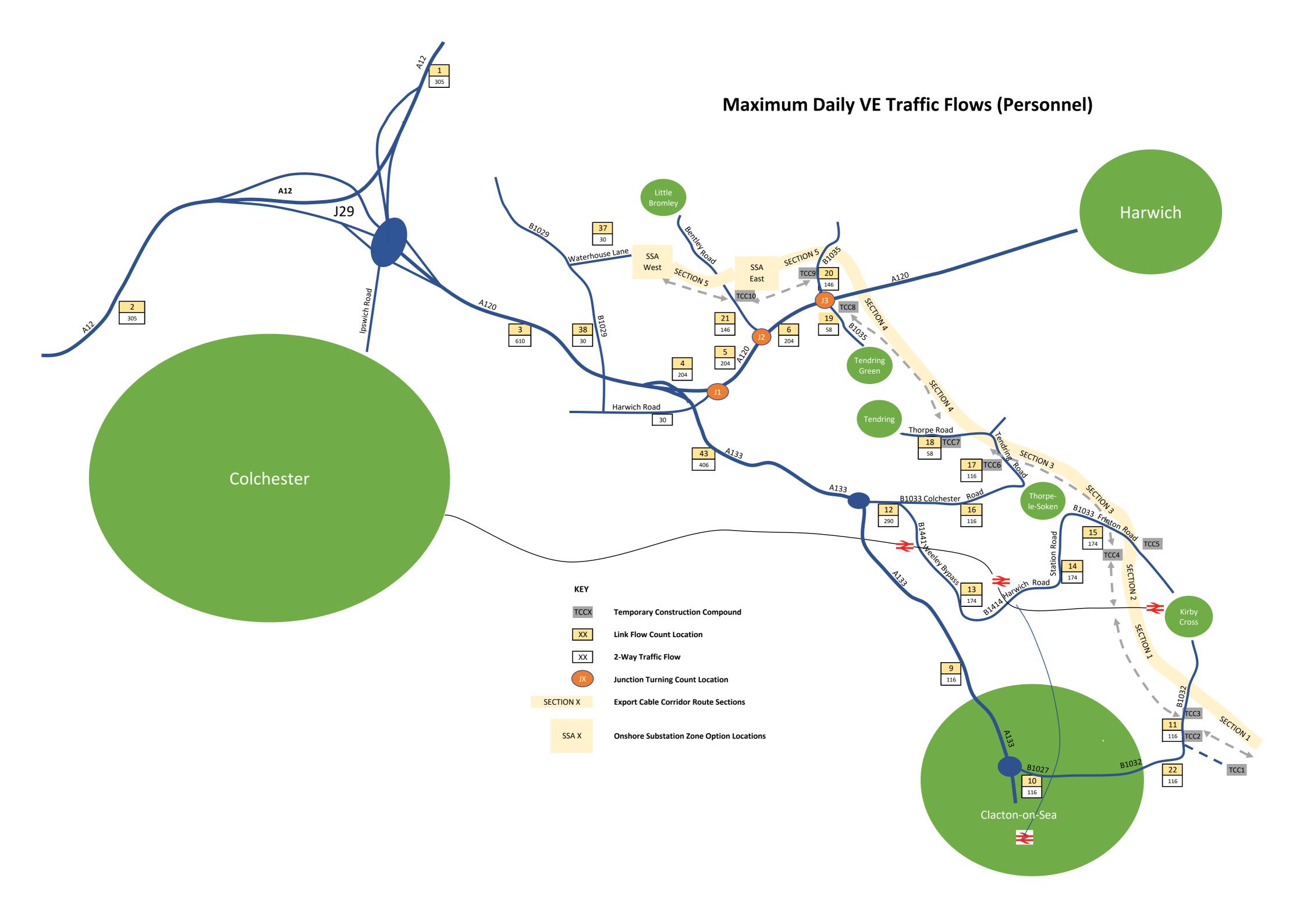
Trip Generation Data – Substation

Substation transport metrics

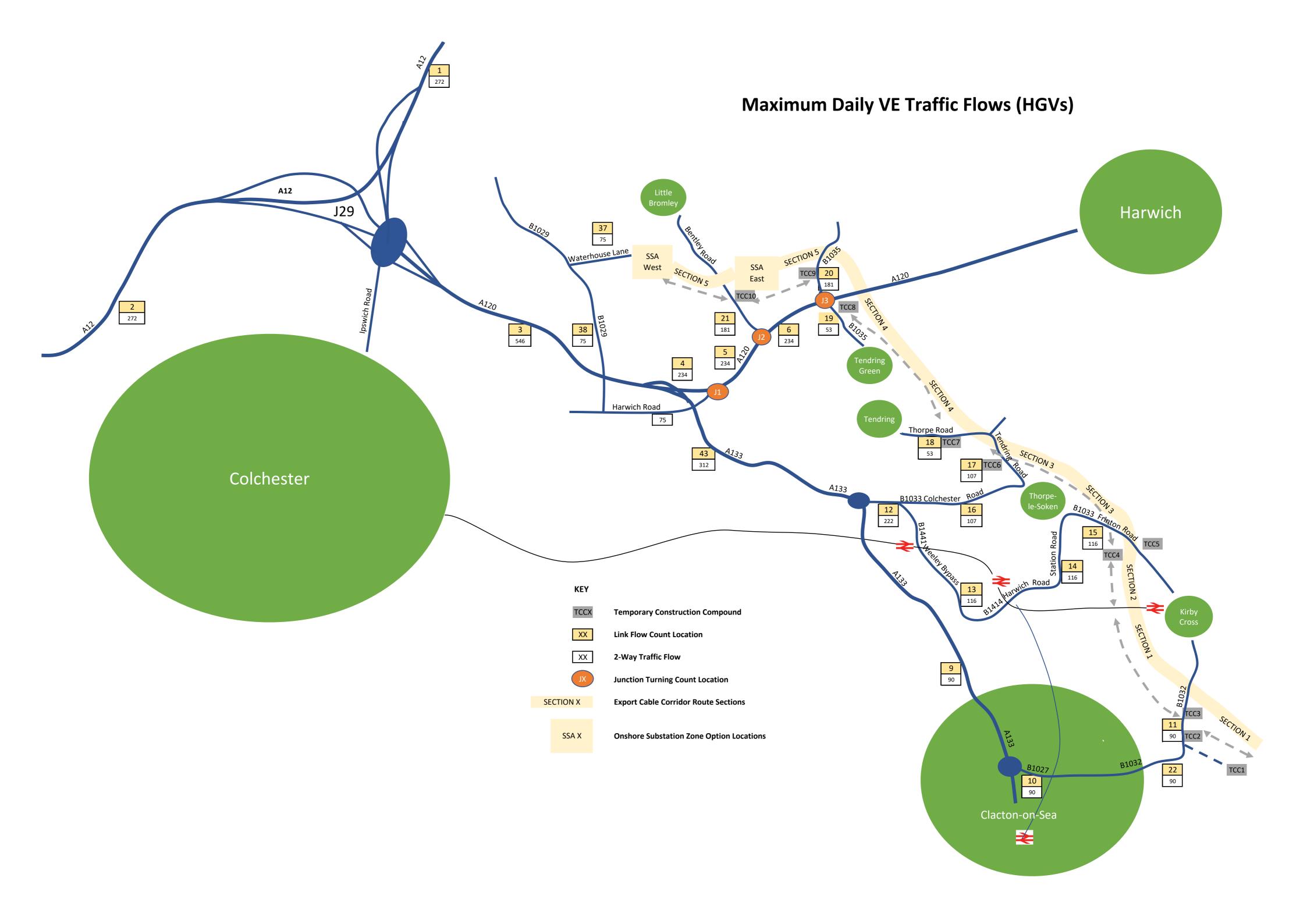
Substation Construction - maximum vehicle movements

Parameter	Base Value	Comments	Reference		
Total movements - Civil main works - (AADT)	71	e.g. 21,085 over 60weeks This is a naturally conservative value, dominated by the assumption of imported Engineered Fill	Construction Methodologies and Parameters - S27, 004369960-01. Site 2 values used as worst case for 4 sites considered in S99 and S27		
Total movements - M&E equipment deliveries - (AADT)	1.33	e.g. 150 over 45weeks	Parameters - S27, 004369960-01. Not site specific		
Total movements - Abnormal load deliveries	Approx. 8 two way movements for transformers on 20 Axle frame trailers or similar Approx. 16 - 24 two way movements oversized indivisible plant	2- 4 Transformers on 20-24 axle frame trailers 8 -12 items of Oversized indivisible plant such as shunt reactors and STATCOM equipment buildings. These delivered via special order vehicles (>44t and oversize)	Construction Methodologies and Parameters - S27, 004369960-01. Not site specific. Typo in document - corrected by Motts via email 01/09/22, with further details 07/09		
Total movements - light vehicles/cars (AADT)	20-30	Vans, 4x4 and cars	Construction Methodologies and Parameters - S27, 004369960-01. Not site specific.		
Total movements - hazardous waste (AADT)	0.7	e.g. 200 over 60 weeks 8x8 rigid skip/tipper lorry	Construction Methodologies and Parameters - S27, 004369960-01. Not site specific.		
Total movements - non hazardous waste (AADT)	0.4	e.g. 116 over 60 weeks 8x8 rigid skip lorry	Construction Methodologies and Parameters - S27, 004369960-01. Not site specific.		

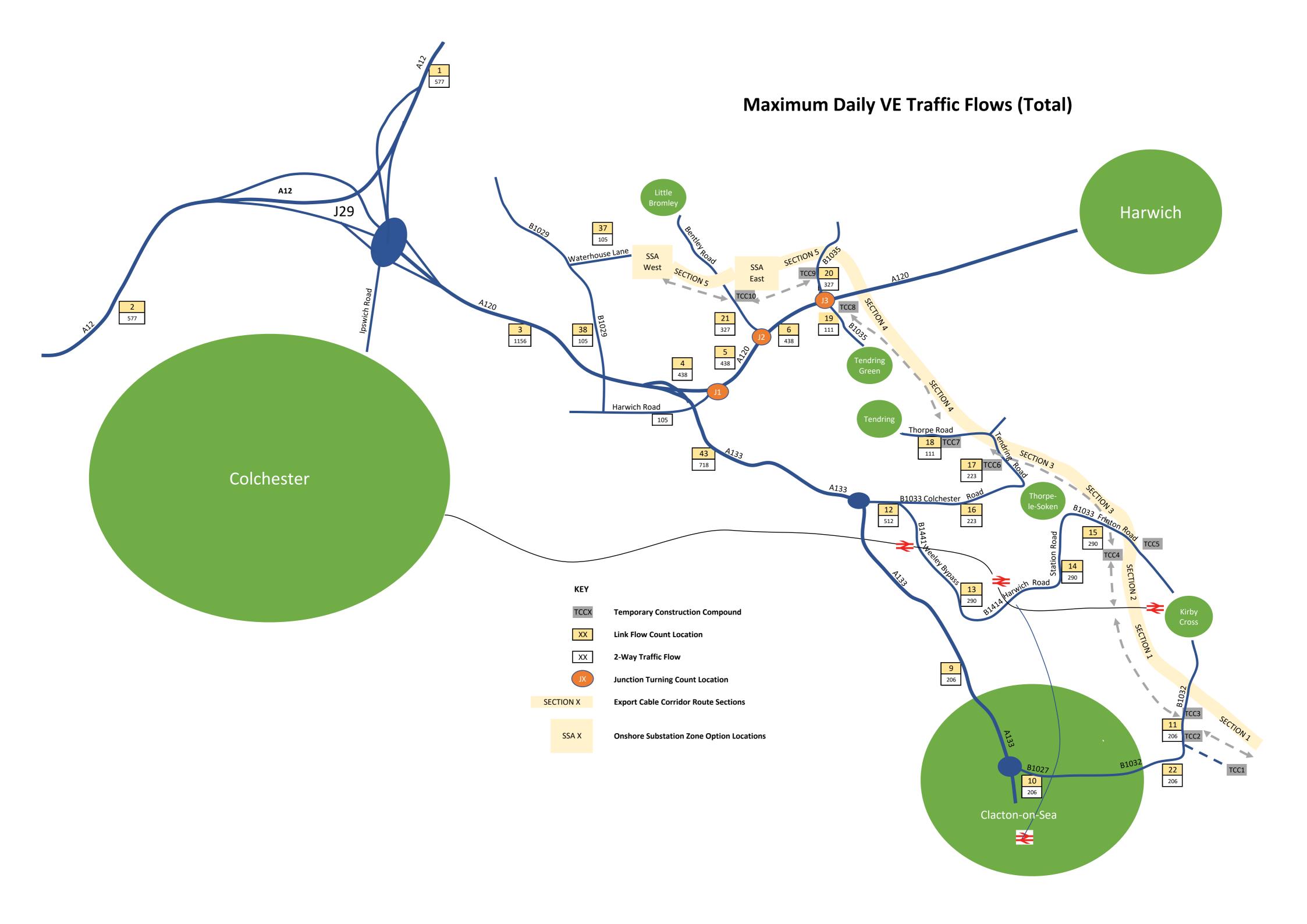
Comments on Section

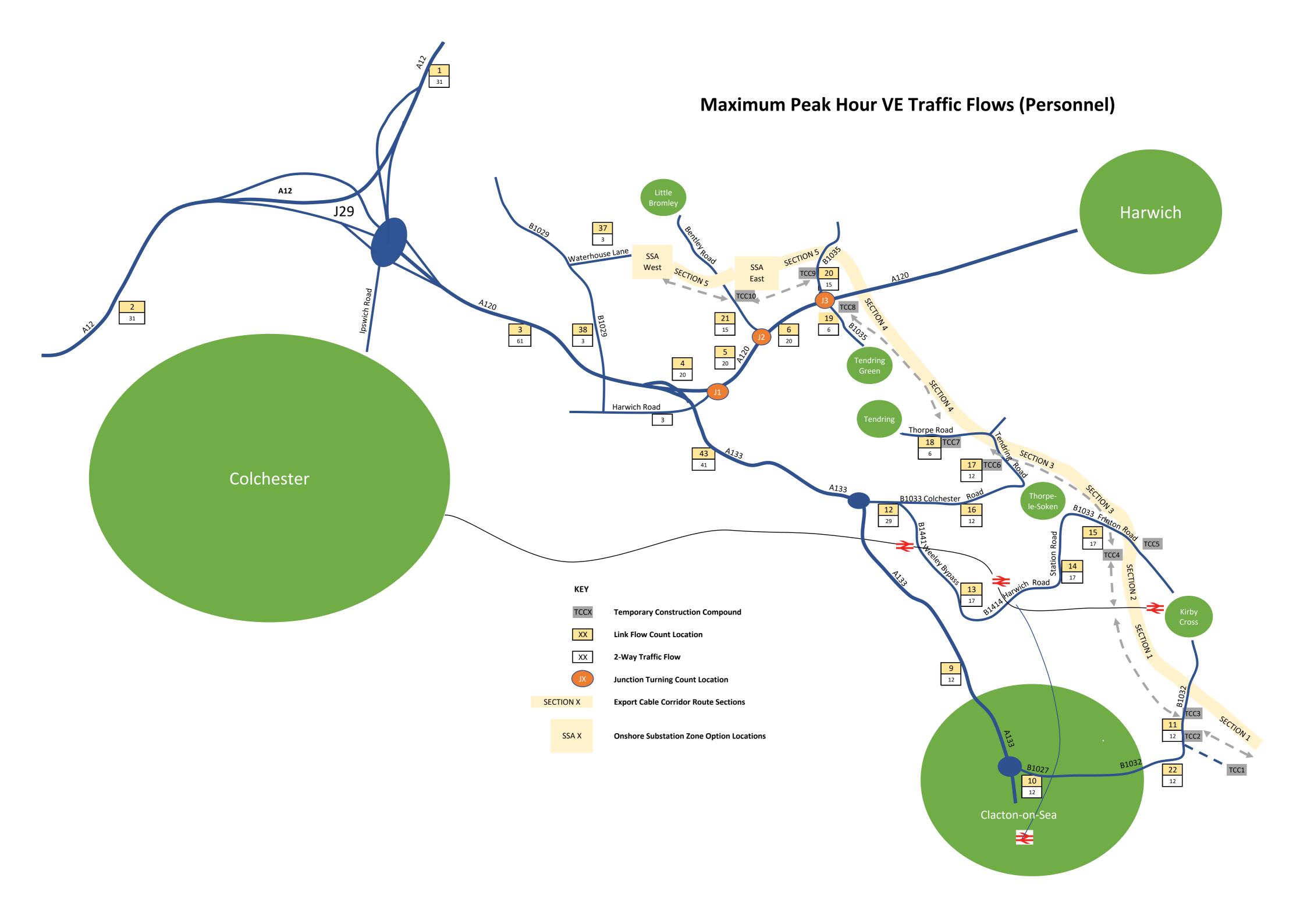

AADT = Annual Average Daily Traffic

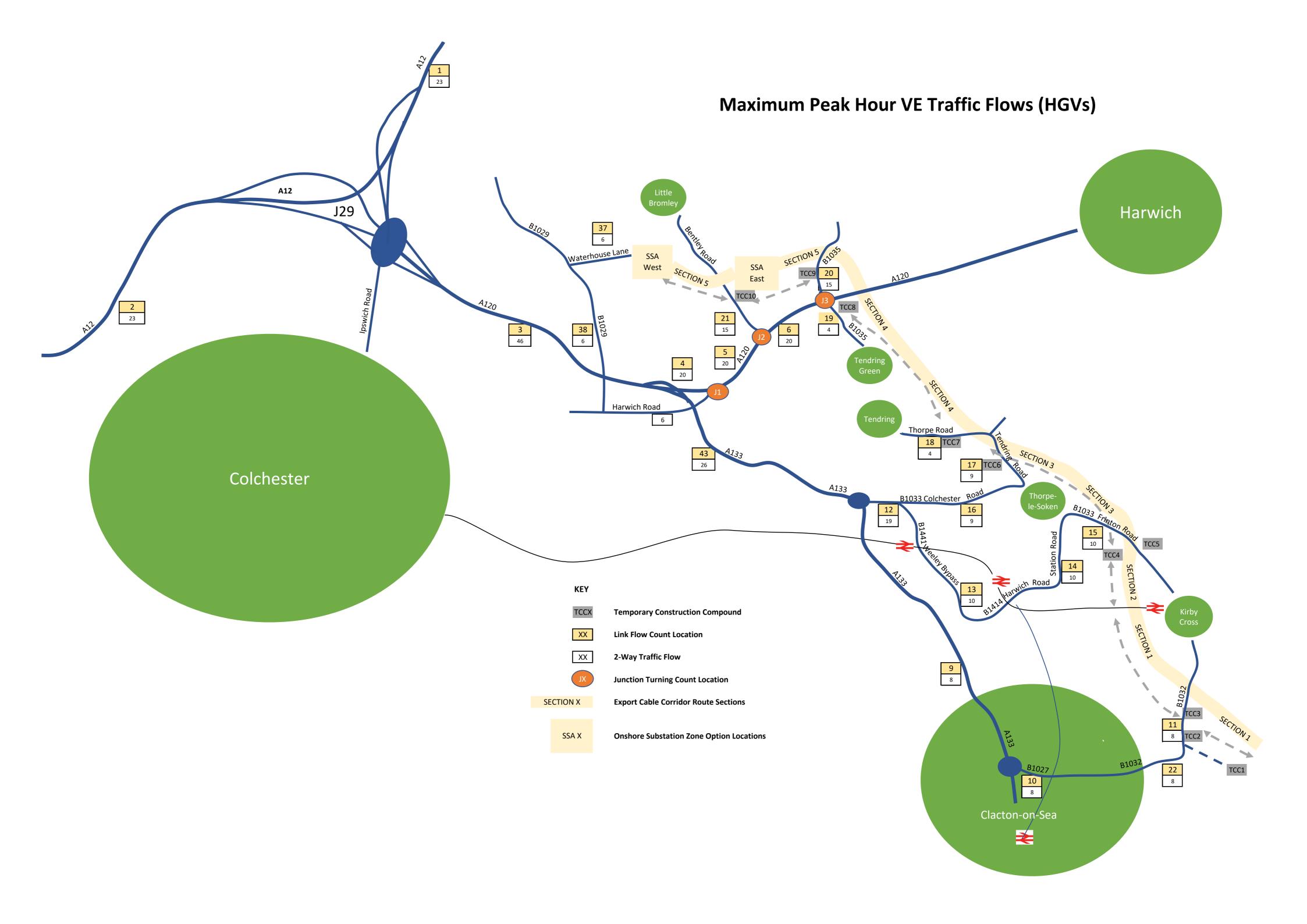
Forecast vehicle movements will be refined as the design is refined. Values are indicative average two-way numbers of construction vehicle movements

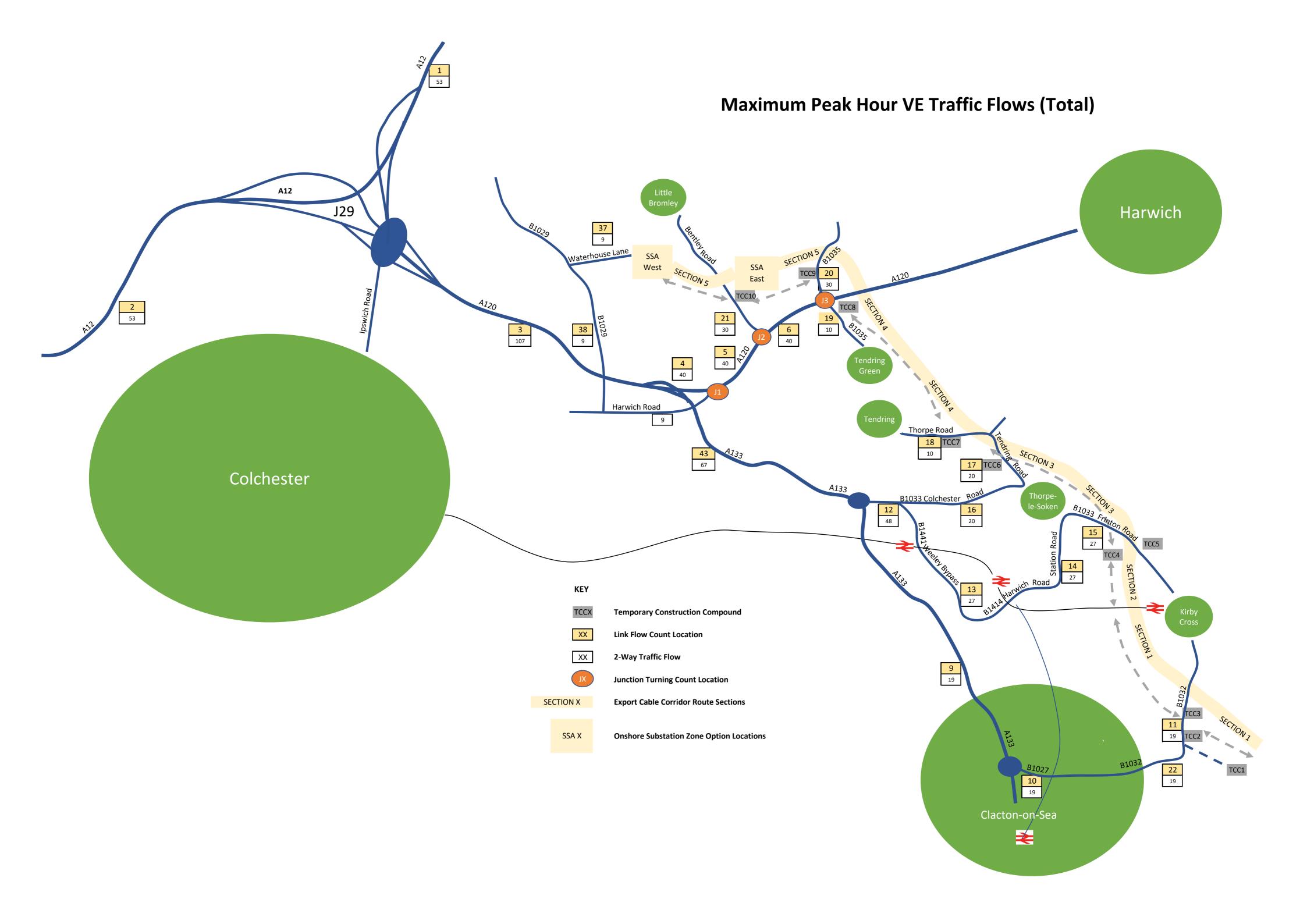

Request: "Construction Traffic Data. Require overall and Heavy Duty Vehicles (HDV) in 24-hour Annual Average Daily Traffic format (along with developmental and committed development trips disaggregated), corresponding to the development scenarios of consideration (i.e. Base, Future Base and Do-Something, and also potential phasing of construction works, if available). Links should be provided in GIS or CAD format. Also, data from traffic counts, if deployed in support of project. Construction traffic data including worst case hourly HGV movements at the site including routing"

Traffic figures are the total of arrivals + departures


Maximum Daily VE Traffic Flows – Personnel


Maximum Daily VE Traffic Flows – HGVs


Maximum Daily VE Traffic Flows – Total


Maximum Peak Hour VE Traffic Flows – Personnel

Maximum Peak Hour VE Traffic Flows – HGVs

Maximum Peak Hour VE Traffic Flows – Total

EUROPEAN OFFICES

United Kingdom

AYLESBURY

T: +44 (0)1844 337380 T: +44 (0)203 6915810

BELFAST

belfast@slrconsulting.com T: +44 (0)1622 609242

LONDON

MAIDSTONE

BRADFORD-ON-AVON

MANCHESTER (Denton) T: +44 (0)161 5498410 T: +44 (0)1225 309400

BRISTOL

MANCHESTER (Media City) T: +44 (0)117 9064280 T: +44 (0)161 8727564

CARDIFF

NEWCASTLE UPON TYNE T: +44 (0)2920 491010 T: +44 (0)191 2611966

CHELMSFORD

NOTTINGHAM T: +44 (0)1245 392170 T: +44 (0)115 9647280

EDINBURGH

SHEFFIELD T: +44 (0)131 3356830 T: +44 (0)114 2455153

EXETER

SHREWSBURY T: +44 (0)1392 490152 T: +44 (0)1743 239250

GLASGOW

T: +44 (0)141 3535037 T: +44 (0)1786 239900

GUILDFORD

T: +44 (0)1483 889800 T: +44 (0)1905 751310

Ireland

France

GRENOBLE

STIRLING

WORCESTER

DUBLIN

T: +353 (0)1 296 4667 T: +33 (0)4 76 70 93 41

0333 880 5306 fiveestuaries@rwe.com www.fiveestuaries.co.uk

Five Estuaries Offshore Wind Farm Ltd Windmill Hill Business Park Whitehill Way, Swindon, SN5 6PB Registered in England and Wales company number 12292474