

FIVE ESTUARIES OFFSHORE WIND FARM

PRELIMINARY ENVIRONMENTAL INFORMATION REPORT

VOLUME 4, ANNEX 5.1: MAIN ARRAY - BENTHIC ECOLOGY MONITORING REPORT

Document Reference 004685532-01

Revision A

Date May 2022

Project	Five Estuaries Offshore Wind Farm
Sub-Project or Package	Preliminary Environmental Information Report
Document Title	Volume 4, Annex 5.1: Main Array - Benthic Ecology Monitoring Report
Document Reference	004685532-01
Revision	A

COPYRIGHT © Five Estuaries Wind Farm Ltd

All pre-existing rights reserved.

This document is supplied on and subject to the terms and conditions of the Contractual Agreement relating to this work, under which this document has been supplied, in particular:

LIABILITY

In preparation of this document Five Estuaries Wind Farm Ltd has made reasonable efforts to ensure that the content is accurate, up to date and complete for the purpose for which it was contracted. Five Estuaries Wind Farm Ltd makes no warranty as to the accuracy or completeness of material supplied by the client or their agent. Other than any liability on Five Estuaries Wind Farm Ltd detailed in the contracts between the parties for this work Five Estuaries Wind Farm Ltd shall have no liability for any loss, damage, injury, claim, expense, cost or other consequence arising as a result of use or reliance upon any information contained in or omitted from this document.

Any persons intending to use this document should satisfy themselves as to its applicability for their intended purpose.

The user of this document has the obligation to employ safe working practices for any activities referred to and to adopt specific practices appropriate to local conditions.

Revision	Date	Status/Reason for Issue	Originator	Checked	Approved
Α	May-22	Final for PEIR	Fugro	GoBe	VE OWFL

Fugro – WPM1, WPM2 & WPM3 – Main Array – Benthic Ecology Monitoring Report

Five Estuaries Offshore Site Investigation | UK Sector, North Sea

004032871 03 | 11 May 2022

Complete

Five Estuaries Offshore Wind Farm Limited

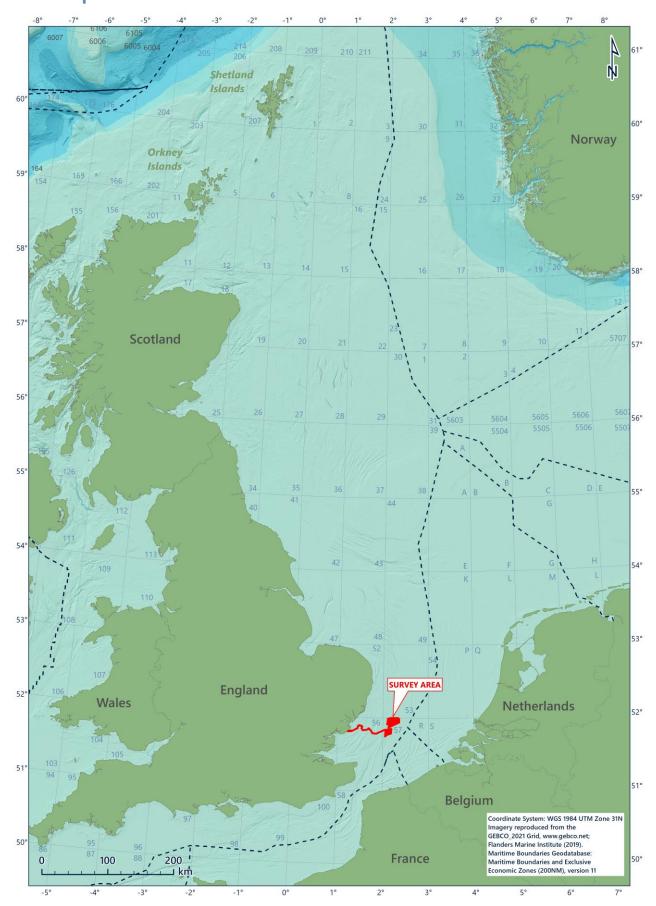
Document Control

Document Information

Project Title	Five Estuaries Offshore Site Investigation
Document Title	Fugro – WPM1, WPM2 & WPM3 – Main Array – Benthic Ecology Monitoring Report
Fugro Project No.	200867
Client Document No.	004032871
Issue Number	03
Issue Status	Complete

Client Information

Client	Five Estuaries Offshore Wind Farm Limited
Client Address	Windmill Hill Business Park, Swindon, SN5 6PB
Client Contact	Mark Osola
Client Document No.	004032871_03


Revision History

Issue	Date	Status	Comments on Content	Prepared By	Checked By	Approved By
01	2 March 2022	Complete	Awaiting client comments	SDG	SGW/SRB	SGW
02	5 April 2022	Complete	Issued to client	SDG	SGW/SRB	SGW
03	5 April 2022	Complete	Issued as compete	SDG	SGW/SRB	SGW

Project Team

Initials	Name	Role
SGW	Séamus Whyte	Senior Project Manager
SDG	Stefania De Gregorio	Principal Marine Ecologist
SRB	Susan Brittain	Principal Chemist (Inorganics Lead)

Frontispiece

Executive Summary

Introduction

Five Estuaries Offshore Wind Farm Limited contracted Fugro to undertake a benthic site characterisation survey at the Five Estuaries Offshore Wind Farm (VE) development area. The VE comprises a main array area (north and south arrays with an interconnector in between) and an export cable route (ECR) that will run from the offshore arrays to the landing site. Operations were conducted onboard the MV Marshall Art during the survey period 9 to 16 November 2021. An intertidal survey of the cable landing site, between Holland-on-Sea and Frinton-on-Sea, Essex, was undertaken during the survey period 25 to 27 July 2021.

The results of the study will inform the project final development consent order (DCO) application, the environmental impact assessment (EIA) and the habitats regulation assessment (HRA).

The aim of the benthic survey was to provide a baseline characterisation of the benthic ecology and to supplement the existing data across the area of interest. The aim was fulfilled through acquisition of sediment samples and seabed video and photographic data. Sediment samples were acquired to characterise the benthic environment in terms of physico-chemical features and biological communities. Seabed video and photographic data provided information on habitat types, with focus on habitats of conservation importance, such as those listed under Annex I of the Conservation of Habitats and Species Regulations 2019 and on the Oslo and Paris (OSPAR) list of threatened and/or declining habitats and species. The results of the seabed video and photographic data were integrated with those from the grab samples to further define the habitats and associated biological communities in terms of biotopes in line with the European Nature Information System (EUNIS) habitat classification.

This report presents the results of data acquired across the VE main array survey area.

Survey Strategy

Seventeen environmental sampling stations, to be assessed through drop-down camera and single replicate grab samples, were proposed based on review of available regional and geophysical data. Review of side scan sonar (SSS) data placed emphasis on areas of potential conservation value, boundaries between areas of differing sonic reflectivity, bathymetric highs and lows and areas representative of the general background conditions of the site. Acquisition of grab samples for chemistry analysis was proposed at nine stations. Seabed video and photography were acquired prior to grab sampling to ensure no damage to potential habitats of conservation importance. One drop-down video (DDV) sample was proposed to target areas of hard/coarse substrates and two DDV transects were proposed in areas of potential conservation importance, referred to as 'areas of focus'.

Seabed video and photography were acquired using a Subsea Technology and Rentals (STR) deep-sea camera system. In areas of poor visibility, seabed video and photography were acquired using a Bowtech SeaKnight underwater camera system mounted within a freshwater frame.

Faunal and sediment PSD samples were acquired using a 0.1 m² mini Hamon grab, whereas chemistry samples were acquired using a 0.1 m² Day grab.

Grab samples were successfully acquired at all proposed stations.

Sediment Characteristics

Sediments across the VE main array survey area were characterised by coarse sediment comprising mainly sand and gravel. Mud content was on average low, with most stations being devoid of mud. The exception was station FE1_01, in the north array, which had a mud content of 47.10 %. Notable contribution to gravel emanated from shell fragments, as recorded from the qualitative description of the grab samples. The sediment sorting ranged from well sorted to extremely poorly sorted, with most stations having very poorly sorted sediments.

The sediment diversity resulted in five sediment classes being identified through the Folk (British Geological Survey [BGS] modified) classification, of which 'gravelly sand' and 'sandy gravel', typified most stations, whereas 'sand' and 'muddy sandy gravel' each typified three stations and 'gravelly mud' typified one station.

The Wentworth (1922) scale was used to assess the coarseness of the sediment resulting in six sediment descriptions, including 'very coarse sand' and 'coarse sand', each typifying five stations, whereas 'medium sand' and 'very fine sand' typified each one station. Of the remaining stations, three were described as 'granule' and two were described as 'pebble'.

Most stations had bimodal or polymodal distributions, typical of areas with different sources of sediment likely associated with riverine input and sediment disturbance in a high energy environment, such as that of the study area.

Sediment Chemistry

Sediment samples were analysed for total hydrocarbon content (THC), polycyclic aromatic hydrocarbons (PAHs), metal content, polychlorinated biphenyls (PCBs), organotins, and organochlorine pesticides (OCPs). Twenty-two PAHs were analysed, including the United States Environmental Protection Agency (US EPA) 16 PAHs, selected alkyl naphthalenes and phenanthrenes, benzo[e]pyrene and perylene.

Results were compared against marine sediment quality guidelines (SQGs) including the OSPAR effects range low (ERL), the National Oceanic and Atmospheric Administration effects range median (ERM), the Centre for Environment, Fisheries and Aquaculture Science (Cefas) Guideline Action Levels (ALs) and the Canadian threshold effect level (TEL) and probable effect level (PEL).

The concentrations of THC and PAHs were below their respective marine SQGs across the VE main array survey area.

Of the 11 metals analysed, 10 had concentrations below their respective marine SQGs across the VE main array survey area. Arsenic concentrations were above the Canadian PEL at all stations, however,

regional contextualisation indicated that the concentrations of arsenic are within the range reported for the Outer Thames Estuary.

The concentrations of all individual PCB congeners analysed were below the limit of detection (LOD) across the VE main array survey area and the sum of the 25 congeners was below the Cefas ALs.

The organotins analysed were dibutyltin (DBT) and tributyltin (TBT), the concentrations of which were below their respective LOD and below the Cefas ALs across the VE main array survey area.

The OCPs analysed in this study were alpha-hexachlorocyclohexane (AHCH), beta-hexachlorocyclohexane (BHCH), gamma-hexachlorocyclohexane (GHCH), dieldrin, hexachlorobenzene (HCB), p,p'-dichlorodiphenyldichloroethylene (PPTDE), p,p' dichlorodiphenyltrichloroethane (PPDDT) and p,p'-dichlorodiphenyldichloroethane (PPDDE). All OCPs across the VE main array survey area had concentrations below their respective LOD and all values were below the Cefas marine SQGs, which currently include AL1 for dieldrin and DDT.

Macrofauna

The macrofaunal community comprised infaunal and epifaunal taxa, the latter being represented by solitary and colonial organisms. Annelida were dominant in terms of taxa composition and abundance of the enumerated macrofauna, which comprised infauna and solitary epifauna. There was considerable variation in the number of taxa and individuals across the main array survey area, with stations along the interconnector generally having higher values of richness and diversity, likely associated with the coarseness and diversity of the sediment, which featured the highest mean content of gravel. This provides suitable substrate for the attachment of epifauna, while the gravelly interstices provide microhabitats for smaller fauna. This was reflected in the values of faunal diversity, which was on average good, in line with the threshold values descriptions of Dauvin et al. (2012). By comparison, stations in the south array, featuring predominantly sandy sediments, had generally low species richness and diversity, the latter being on average moderate, in line with the threshold values descriptions of Dauvin et al. (2012).

Annelida were represented by polychaetes including *Lumbrineris* cf. *cingulata*, *Pholoe baltica*, *Glycera lapidum*, *Aonides paucibranchiata*, *Notomastus*, *Spirobranchus lamarcki* and *Scalibregma inflatum*. The polychaete *Sabellaria spinulosa* was recorded in grab samples from four stations, with abundances of between one and nineteen individuals.

Mollusca were represented by bivalves such as *Spisula elliptica*, *Kurtiella bidentata*, *Abra alba*, *Diplodonta rotundata* and *Goodallia triangularis* and the chiton *Leptochiton asellus*.

Echinodermata were represented by species typical of habitats exposed to strong tidal currents including brittlestars such as *Ophiura albida* and *Amphipholis squamata*, and the urchin *Echinocyamus pusillus*.

Other taxa were represented mainly by species of Nemertea, non-burrowing anemones of the order Actiniaria, phoronid of the genus *Phoronis* and ascidians.

Four macrofaunal assemblages were identified through the multivariate analysis, each assemblage having <45 % similarity and moderately associated with sediment type.

Annelida comprised most of the infaunal biomass, owing to their numerical dominance, whereas the Echinodermata biomass was associated with the abundance of brittlestars as well as the size of invertebrates, notably sea urchins.

Colonial epifauna included Bryozoa, notably *Schizomavella*, *Aspidelectra melolontha*, *Escharella* immersa and *Disporella hispida*; Cnidaria, notably *Hydrallmania falcata*, *Alcyonium digitatum* and species of Sertulariidae; Porifera, including species of *Cliona* (agg.) and ciliate of the family Folliculinidae.

Some of these taxa, notably, *A. digitatum* were also recorded through the seabed video and photography. Other characteristic epibenthic taxa recorded through the seabed video and photography included molluscs, notably *Calliostoma zizyphinum* and *Aequipecten opercularis*; echinoderms, notably *Asterias rubens*, *Psammechinus miliaris* and species of Ophiuroidea; anemones, including species of Sagartiidae and *Urticina* and faunal turfs of bryozoans and hydrozoans. Encrusting polychaete tubes and barnacles were also recorded along with fish, albeit less frequently, notably *Scyliorhinus canicula*, and species of the family Triglidae. Overall, epibiotic communities recorded by the seabed video footage were comparable to those reported for the shallower sediment areas of the southern North Sea.

Seabed Habitats and Biotopes

Two biotope complexes and one biotope were identified from the analysis of the grab samples:

- 'Deep circalittoral coarse sediment' (A5.15);
- 'Deep circalittoral sand' (A5.27);
- 'Polychaete-rich deep *Venus* community in offshore mixed sediments' (A5.451), which is the only biotope representative of the biotope complex 'Offshore circalittoral mixed sediments' (A5.45).

In addition, the biotope 'Piddocks with sparse associated fauna in sublittoral very soft chalk or clay' (A4.231), was assigned to areas of firm clay with round burrows of piddocks recorded at station FE1_01 in the north array, through seabed video and photography.

Potentially Sensitive Habitats and Species

Aggregation of cobbles, along transects at three stations in the north array, were assessed for the potential of these aggregations to constitute Annex I habitat 'Reef'. The overall assessment for these areas was of 'Not a reef', based on assessment in line with relevant guidance.

Two UK Biodiversity Action Plan (BAP) priority habitats were recorded, namely 'Piddocks with sparse associated fauna in sublittoral very soft chalk or clay' (A4.231) and the broad scale habitat (BSH) 'Subtidal sands and gravel', which encompass sandy and coarse sediment habitats and biotopes. 'Subtidal sands and gravel' is also a habitat of conservation importance (HOCI) in Marine Protected Zones (MCZs), whereas 'Piddocks with sparse associated fauna in sublittoral very soft chalk or clay' (A4.231) may occur in the habitat 'Peat and clay exposure' which is a HOCI in MCZs.

A single specimen of the nationally scarce crab *Thia scutellata* was recorded in the grab sample from station FE2_02, in the south array.

Cryptogenic and Non-native Species (NNS)

None of taxa recorded in this study are reported to be NNS or cryptogenic.

Contents

Exec	utive Sum	mary	I
1.	Introduc	tion	1
1.1	General F	Project Description	1
1.2	Scope of	Work	1
1.3	Environm	iental Legislation	2
1.4		Habitats, Species and Protected Areas	3
1.5	•	ental Quality Standards for Sediment Chemical Concentrations	6
1.6		te Reference System	7
2.	Survey St	trategy	8
2.1	Geophysi	cal Data	8
2.2	Environm	iental Data	8
3.	Methods		12
3.1	Survey M	ethods	12
	•	eabed Video and Photography	12
		ediment Sampling	12
3.2		ry Methods	12
		ediment Characteristics	12
		ediment Hydrocarbons	13
		ediment Metals	13
	3.2.4 Se	ediment Polychlorinated Biphenyls	14
	3.2.5 Se	ediment Organotins	14
	3.2.6 O	rganochlorine Pesticides (OCPs)	14
	3.2.7 Se	ediment Macrofauna	14
3.3	Data Ana	lysis	15
	3.3.1 Se	ediment Particle Size Distribution Statistics	15
	3.3.2 Se	ediment Macrofauna Data Rationalisation	16
	3.3.3 Se	ediment Macrofaunal Univariate Analysis	16
	3.3.4 Bi	omass Analysis	16
	3.3.5 M	ultivariate Analysis	17
	3.3.6 Se	eabed Habitats and Biotopes	18
4.	Results		20
4.1	Field Ope	erations	20
	4.1.1 Ba	athymetry and Seabed Features	20
		eabed Video and Photography	20
		ediment sampling	21
4.2	Sediment	Characterisation	24
	4.2.1 U	nivariate Analysis	24

	i cici	C.1.C.3	07
7.	Refer	rences	84
6.	Concl	lusions	82
5.5	Crypt	ogenic and Non-native Species (NNS)	81
	5.4.1	Potentially Sensitive Habitats and Species	81
5.4	Habit	ats and Biotopes	78
5.3	Macro	ofaunal Communities	77
	5.2.5	Sediment Organochlorine Pesticides	76
	5.2.4	Sediment Organotins	76
	5.2.3	Sediment Polychlorinated Biphenyls	76
	5.2.2	Sediment Metals	75
	5.2.1	Sediment Hydrocarbons	75
5.2		nent Chemistry	75
5.1	Sedin	nent Characterisation	74
5.	Discu	ssion	74
4.6	Bioto	pe Classification and Sediment Data	71
	4.5.1	Biotope Classification	67
4.5	Seabe	ed Habitats and Biotopes	66
	4.4.2	Colonial Epifauna	62
	4.4.1	Infaunal and Solitary Epifauna	45
4.4	Sedin	nent Macrofauna	45
	4.3.5	Sediment Organochlorine Pesticides	43
	4.3.4	Sediment Organotins	43
	4.3.2	Sediment Metals Sediment Polychlorinated Biphenyls	42
	4.3.1 4.3.2	Sediment Hydrocarbons Sediment Metals	38 40
4.3		nent Chemistry	38
4.2		_	
	4.2.2	Investigation of Granulometric Similarities	32

Appendices

Appendix A Guidelines on Use of Report

Appendix B Methodologies

B.1 Survey Methods

Appendix C Logs

- C.1 Subtidal Survey Log
- C.2 Grab Log
- C.3 Video and Photographic Log

Appendix D Sediment Particle Size and Grab Sample Photographs

- D.1 Sediment Particle Size Distribution Results
- D.2 Subtidal Grab Sample Particle Size Distribution
- D.3 Subtidal Grab Sample Photographs

Appendix E Chemistry Analysis Certificates

Appendix F Macrofaunal Analysis

- F.1 Subtidal Grabs Macrofaunal Abundance
- F.2 Subtidal Grabs Macrofaunal Biomass

Figures in the Main Text

rigure 1.1. Protected areas relevant to the survey area, rive Estuaries Offshore site investigation	5
Figure 2.1: Proposed survey locations overlaid on a side scan sonar mosaic, main array, Five Estuarie	S S
Offshore Site Investigation	11
Figure 4.1: Completed survey locations overlaid on bathymetry, main array, Five Estuaries Offshore S	Site
Investigation	23
Figure 4.2: Sediment fractional composition, main array, Five Estuaries Offshore Site Investigation	28
Figure 4.3: Spatial variations of percentage of sand, gravel and fines, main array, Five Estuaries Offshore Site Investigation	29
Figure 4.4: Spatial variations of the median [µm] sediment particle size, main array, Five Estuaries Offshore Site Investigation	30
Figure 4.5: Folk (BGS modified) sediment description, main array, Five Estuaries Offshore Site	
Investigation	31
Figure 4.6: Figure 4.7: Wentworth (1922) sediment description, main array, Five Estuaries Offshore Si Investigation	ite 31
Figure 4.8: (A) dendrogram and (B) nMDS of hierarchical clustering analysis of sediment particle size	≘,
main array, Five Estuaries Offshore Site Investigation	32
Figure 4.9: nMDS ordination of hierarchical clustering analysis of PSD with superimposed circles	
proportional in diameter to percentage of particles driving the separation of groups Five Estuaries	
Offshore Site Investigation	35
Figure 4.10: 2D PCA of sediment composition with superimposed, arrays and circles proportional in diameter to percentage of mud, Five Estuaries Offshore Site Investigation	36
Figure 4.11: 2D PCA of sediment composition with superimposed, arrays and circles proportional in	
diameter to percentage of gravel, Five Estuaries Offshore Site Investigation	37
Figure 4.12: 2D PCA of sediment composition with superimposed, sorting coefficient, Five Estuaries	
Offshore Site Investigation	37
Figure 4.13: Phyletic composition of enumerated macrofaunal (A) taxa and (B) individuals, Five Estuaries Offshore Site Investigation	46
Figure 4.14: Number of macrofaunal taxa (0.1 m²), main array, Five Estuaries Offshore Site	. •
Investigation	49
Figure 4.15: Number of macrofaunal individuals (0.1 m²), main array, Five Estuaries Offshore Site	
Investigation	50
Figure 4.16: Dendrogram of hierarchical clustering analysis of enumerated fauna, main array, Five	
Estuaries Offshore Site Investigation	51

Figure 4.17: nMDS of hierarchical clustering analysis of enumerated fauna, main array, Five Estuaries Offshore Site Investigation	s 52
Figure 4.18: nMDS of hierarchical clustering analysis with superimposed multivariate groups and circles proportional in diameter to the abundance of taxa responsible for the separations of groups Five Estuaries Offshore Site Investigation	s, 56
Figure 4.19: 2D PCA of sediment composition with superimposed survey blocks and macrofaunal (A multivariate groups and (B) Shannon-Wiener [H'Log ₂] index of diversity, main array, Five Estuaries	
Offshore Site Investigation	57
Figure 4.20: Phyletic composition of macrofaunal biomass, main array, Five Estuaries Offshore Site Investigation	60
Figure 4.21: 2D PCA of sediment composition with superimposed arrays and circles proportional in diameter to the abundance of macrofaunal biomass expressed as ash free dry weight [AFDW] g/0.1 m ² , main array, Five Estuaries Offshore Site Investigation	60
Figure 4.22: Spatial variation of macrofaunal biomass, main array, Five Estuaries Offshore Site Investigation	61
Figure 4.23: Spatial variations of the number of colonial epifauna (0.1 m²), main array, Five Estuaries Offshore Site Investigation	64
Figure 4.24: Phyletic composition of epifaunal taxa, main array, Five Estuaries Offshore Site Investigation	65
Figure 4.25: 2D PCA of sediment composition with superimposed circles proportional in diameter to the number of colonial epifauna, main array, Five Estuaries Offshore Site Investigation	65
Figure 4.26: Representative photos of habitats assessed for potential Annex I 'Reef' (geogenic), Five Estuaries Offshore Site Investigation	67
Figure 4.27: 2D PCA of sediment composition with superimposed locations and EUNIS biotopes, marray, Five Estuaries Offshore Site Investigation	72
Figure 4.28: Spatial distribution of EUNIS habitats and biotopes, main array, Five Estuaries Offshore Site Investigation	73
Figure 5.1: Spatial distribution of EUNIS biotope complexes identified through single point grab sampling and side scan sonar data, main array, Five Estuaries Offshore Site Investigation	80
Tables in the Main Text	
Table 1.1: Marine environmental legislation	2
Table 1.2: Marine protected areas biodiversity features Table 1.3: Summany of pearby protected areas. Five Estuaries Offshore Site Investigation	2
Table 1.3: Summary of nearby protected areas, Five Estuaries Offshore Site Investigation Table 1.4: Project geodetic and projection parameters	3 7
Table 1.4. Project geodetic and projection parameters Table 2.1: Proposed sampling stations, main array, Five Estuaries Offshore Site Investigation	9
Table 3.1: Sediment particle size distribution statistics	15
Table 3.2: Macrofaunal univariate statistics	16
	-

Table 4.1: Completed DDV samples and transects, main array, Five Estuaries Offshore Site Investigation

16

17

21

Table 3.3: Macrofaunal standard biomass corrections by phyla

Table 3.5: EUNIS (EEA, 2019) biotope classification hierarchy example

Table 3.4: Multivariate statistics

Table 4.2: Completed subtidal sampling stations, main array, Five Estuaries Offshore Site Investigation	
	21
Table 4.3: Summary of sediment characteristics, main array, Five Estuaries Offshore Site Investigation	n 26
Table 4.4: Summary of particle size distribution, main array, Five Estuaries Offshore Site Investigation	n
	27
Table 4.5: Summary of physical characteristics of sediment groups identified through the cluster analysis, Five Estuaries Offshore Site Investigation	34
Table 4.6: Summary of sediment hydrocarbon analysis, main array, Five Estuaries Offshore Site Investigation	38
Table 4.7: Summary of sediment polycyclic aromatic hydrocarbon analysis, main array, Five Estuaries Offshore Site Investigation	s 39
Table 4.8: Summary of sediment metals analysis, main array, Five Estuaries Offshore Site Investigation	on 41
Table 4.9: Summary of polychlorinated biphenyls (PCBs) analysis, main array, Five Estuaries Offshore Site Investigation	e 42
Table 4.10: Summary of organotins analysis, main array, Five Estuaries Offshore Site Investigation	43
Table 4.11: Summary of organochlorine pesticides (OCP) analysis, main array, Five Estuaries Offshor	e
Site Investigation	44
Table 4.12: Taxonomic groups of enumerated fauna, Five Estuaries Offshore Site Investigation	45
Table 4.13: Community statistics of enumerated fauna (0.1 m²), Five Estuaries Offshore Site	
Investigation	48
Table 4.14: Summary of attributes of multivariate groups of enumerated macrofauna, Five Estuaries	
Offshore Site Investigation	54
Table 4.15: Taxonomic groups of macrofaunal biomass, main array, Five Estuaries Offshore Site	J-T
Investigation	58
	59
Table 4.16: Phyletic composition of macrofaunal biomass, Five Estuaries Offshore Site Investigation	29
Table 4.17: Taxonomic groups of colonial epifauna, main array, Five Estuaries Offshore Site	C 2
Investigation 5. The state of t	62
Table 4.18: Top ten most frequently occurring colonial epifaunal taxa, main array, Five Estuaries	C 2
Offshore Site Investigation	63
Table 4.19: Summary of 'Stony reef' assessment, Five Estuaries Offshore Site Investigation	67
Table 4.20: Habitat classifications, Five Estuaries Offshore Site Investigation	68
Table 4.21: Summary of EUNIS habitat classifications, main array, Five Estuaries Offshore Site	
Investigation	69

Abbreviations

AFDW	Ash free dry weight
AHCH	Alpha-hexachlorocyclohexane
AL1/AL2	Action Level 1 or 2
BAC	Background Assessment Concentration
ВС	Background concentration
BGS	British Geological Survey
ВНСН	Beta hexachlorocyclohexane

- DCII	December 1991			
BSH	Broad-scale habitat			
BIOENV	Biological and Environmental			
BRIG	Biodiversity Reporting and Information Group			
BS	British Standards			
BSL	Below sea level			
CBD	Convention on Biological Diversity			
CCME	Canadian Council of Ministers of the Environment			
Cefas	Centre for Environment, Fisheries and Aquaculture Science			
CEMP	Coordinated Environmental Monitoring Programme			
CSEMP	Clean Seas Environmental Monitoring Programme			
CM	Central meridian			
DAISIE	Delivering Alien Invasive Species Inventories for Europe			
DBT	Dibutyltin			
DCM	Dichloromethane			
DCO	Development Consent Order			
DDT	Dichlorodiphenyltrichloroethane			
DTI	Department of Trade and Industry			
DDV	Drop-down video			
DVV	Dual van Veen grab			
ECR	Export cable route			
EEA	European Environment Agency			
EIA	Environmental Impact Assessment			
EMODnet	European Marine Observation Data Network			
EOL	End of line			
EPSG	European Petroleum Survey Group			
ERL	Effects range low			
ERM	Effects range median			
EU	European Union			
EUNIS	European Nature Information System			
FA	Faunal sample A			
FOCI	Feature of Conservation Importance			
GC	Gas chromatography			
GC-MS	Gas chromatography – mass spectrometry			
GC-Ms-MS	Gas chromatography coupled to a triple quadruple mass spectrometer			
GES	Good environmental status			
GHCH	Gamma-hexachlorocyclohexane			
GNSS	Global Navigation Satellite System			
GPS	Global Positioning System			
НСН	Hexachlorocyclohexane			
HG	Hamon grab			
HOCI	Habitat of Conservation Importance			
HRA	Habitats Regulation Assessment			
IC	Interconnector			
ICES	International Council for the Exploration of the Sea			
ICP-MS	Inductively coupled plasma-mass spectrometry			
ICP-OES	Inductively coupled plasma-optical emission spectrometry			
ISO	International Organization for Standardization			
IUCN	International Union for Conservation of Nature			
JNCC	Joint Nature Conservation Committee			

LAT	Lowest Astronomical Tide				
LED					
LOD	Light-emitting diode				
	Limit of detection				
MBES	Multibeam echosounder				
MCZ	Marine Conservation Zone				
MERMAN	Marine Environment Monitoring and Assessment National (database)				
MALSF	Marine Aggregate Levy Sustainability Fund				
MMO	Marine Management Organisation				
MNCR	Marine Nature Conservation Review				
MPA	Marine Protected Area				
MV	Motor vessel				
NA	North array				
NBN	National Biodiversity Network				
NEMESIS	National Exotic Marine and Estuarine Species Information System				
NERC	Natural Environment and Rural Communities				
NF	No fix				
NMBAQC	North East Marine Biological Association Quality Control				
NNS	Non-native species				
NNSS	Non-native Species Secretariat				
nMDS	Non-metric multi-dimensional scaling				
NOAA	National Oceanic and Atmospheric Administration				
NRC	National Research Council				
NS	No sample				
NSTF	North Sea Task Force				
NT	Not triggered				
OCP	Organochlorine pesticide				
OSPAR	Oslo and Paris Commission				
OWF	Offshore Wind Farm				
PAH	Polycyclic aromatic hydrocarbon				
PC	Physico-chemical sample				
PCA	Principal component analysis				
PEL	Probable effects level				
PPDDE	p,p' dichlorodiphenyltrichloroethane				
PPDDT	p,p'-dichlorodiphenyldichloroethane				
PRIMER	Plymouth Routines in Multivariate Ecological Research				
PSA	Particle size analysis				
PSD	Particle size distribution				
PVC	Polyvinyl chloride				
RSD	Relative standard deviation				
SA	South array				
SAC	Special Area of Conservation				
SBP	Sub-bottom profiler				
SDC	Species Directory Code				
SIMPER	Similarity percentage (analysis)				
SIMPROF	Similarity Profile				
SOL	Start of line				
SPA	Special Protection Area				
SQG	Sediment quality guideline				
SQG	Sediment quality guideline Side scan sonar				

SSSI	Site of Special Scientific Interest
STR	Subsea Technology and Rentals
TBT	Tributyltin
TEL	Threshold effects level
THC	Total hydrocarbon content
TN	Target note
UKAS	United Kingdom Accreditation Service
UK BAP	UK Biodiversity Action Plan
US EPA	Unites States Environmental Protection Agency
US EPA 16	United States Environmental Protection Agency's 16 priority PAH pollutants
UTC	Coordinated Universal Time
UTM	Universal Transverse Mercator
VE	Five Estuaries Offshore Wind Farm
VHF	Very high frequency
WGS 84	World Geodetic System 1984
WoRMS	World Register of Marine Species

Document Arrangement

- Fugro Mobilisation and Calibration Report Fugro Mercator
- Fugro Mobilisation and Calibration Report Fugro Seeker
- Fugro Mobilisation and Calibration Report Marshall Art
- Fugro WPM1 & WPM2 Acquisition / Operations Report Fugro Mercator
- Fugro WPM3 Acquisition / Operations Report Fugro Seeker
- Fugro WPM1, WPM2 & WPM3 Acquisition / Operations Report Marshall Art
- Fugro WPM1 & WPM2 Processing Report Fugro Mercator
- Fugro WPM3 Processing Report Fugro Seeker
- Fugro WPM1 Main Array Seafloor and Shallow Geological Results Report
- Fugro WPM2 & WPM3 ECR Seafloor and Shallow Geological Results Report
- Fugro WPM1, WPM2 & WPM3 Main Array & ECR Environmental Features Report
- Fugro WPM1 Main Array Benthic Ecology Monitoring Report
- Fugro WPM1, WPM2 & WPM3 ECR and Intertidal Benthic Ecology Monitoring Report

1. Introduction

1.1 General Project Description

Five Estuaries Offshore Wind Farm Limited contracted Fugro to undertake a benthic site characterisation survey for the development of the Five Estuaries Offshore Wind Farm (VE). Operations were conducted onboard the MV Marshall Art during the survey period 9 to 16 November 2021.

An intertidal survey of the cable landing site, between Holland-on-Sea and Frinton-on-Sea, Essex, was undertaken during the survey period 25 to 27 July 2021.

Five Estuaries Offshore Wind Farm Limited intend to apply for development consent of the VE, in the southern North Sea, off the coast of Suffolk adjacent to the existing Galloper Offshore Wind Farm (OWF). The VE will cover an area of approximately 148.95 km² across two areas (north and south arrays) and an inter-array area (interconnector) for a possible cable connection between the two arrays. Water depth in the VE area range from 35 m to 50 m Lowest Astronomical Tide (LAT). An export cable route (ECR) will run from the offshore arrays to the landing site.

As part of the Development Consent Order (DCO) application to the Planning Inspectorate, an offshore site investigation is necessary to collect baseline characterisation data, which will be used to inform the environmental impact assessment (EIA) and the habitats regulation assessment (HRA).

The benthic study included geophysical and environmental surveys, the latter comprising a habitat assessment and a benthic characterisation survey. The Environmental Features Report (Fugro 2022a) details the results of the habitat assessment.

This report details the results of the baseline benthic characterisation survey across the main array (north array, south array and interconnector) survey area.

Results of data acquired across the intertidal survey area and along the ECR are presented in the intertidal and benthic ecology monitoring report (Fugro, in press).

Appendix A outlines the guidelines for use of this report.

1.2 Scope of Work

The aim of the benthic subtidal survey was to investigate the physico-chemical and biological properties of the sediment to provide a baseline characterisation of the site and to supplement the existing benthic ecology data across the area of interest. The aim of the study was fulfilled through acquisition of seabed video and photographic data and sediment samples. The seabed video and photography allowed evaluation of the habitat types across the main array survey area, with particular focus on habitats of conservation importance, such as those listed under Annex I of the of the Conservation of Habitats and Species Regulations

2019 and on the Oslo and Paris (OSPAR) list of threatened and/or declining habitats and species (OSPAR, 2021). Sediment samples allowed evaluation of the physico chemical and biological properties of the seabed for the characterisation of the biotic communities and the identification of potential non-native species (NNS).

1.3 Environmental Legislation

The relevant environmental legislation applying to the VE main array survey area has been detailed in the Environmental Features Report (Fugro, 2022a) and summarised in Tables 1.1 and 1.2. Together they guided the identification of habitats and species of conservation importance in the study area.

Table 1.1: Marine environmental legislation

Legislation	Key aims
Conservation of Habitats and Species (Amendment (EU Exit) Regulations 2019), referred to as the 2019 Regulations	Transposes the requirements of the European Union (EU) Habitats Directive and some elements of the Wild Birds Directive (together forming the Nature Directives) into UK law; aims at conserving biodiversity through measures for protection of habitats and species, through the establishment of a national site network of protected sites, referred to as Special Areas of Conservation (SACs) and Special Protection Area (SPA)
UK Marine Strategy	Provides a framework for community action in the field of marine environmental policy through three components: 1. assessment of the state of UK seas and revised objectives for good
OK Marine Strategy	environmental status (GES) for 2018 to 2024; 2. monitoring progress against set targets and indicators;
	3. measuring the achievement of GES
Marine and Coastal and Access Act 2009	Enables the designation of Marine Conservation Zones (MCZs) in England, Wales and UK offshore waters
Natural Environment and Rural Communities Act 2006 (NERC)	Requires the relevant Secretary of State to compile a list of habitats and species of principal importance for the conservation of biodiversity.
The Wildlife and Countryside Act 1981 (as amended)	Regulates the designation of Site of Special Scientific Interest (SSSIs), which underpins the designation of Ramsar sites
Oslo and Paris (OSPAR) Convention	Establishes Marine Protected Areas (MPAs)
Convention on Biological Diversity (CBD)	Conservation of biological diversity and sustainable use of its components
Ramsar Convention	Aims at the conservation and wise use of all wetlands through local and national actions and international cooperation, as a contribution towards achieving sustainable development

Table 1.2: Marine protected areas biodiversity features

Biodiversity Features	Description
Broad-scale habitats (BSH)	Represent the main types of seabed and associated biota in UK; their conservation ensures preservation of the full range of marine biodiversity

Biodiversity Features	Description
Features of conservation importance (FOCI)	Represent habitats and/or species are particularly threatened, rare or declining and therefore need protection
UK Post-2010 Biodiversity Framework priority habitats and/or species	List of important (priority) habitats and species, produced by the UK Biodiversity Action Plan (BAP), superseded by the UK Post-2010 Biodiversity Framework, under the Convention on Biological Diversity (CBD). Under the NERC Act 2006, the UK BAP priority species and habitats in England are referred to as habitats and species of principal importance
Oslo and Paris (OSPAR) list of threatened and/or declining (T&D) species and habitats	Allows setting priorities for further conservation and protection of marine biodiversity

1.4 Regional Habitats, Species and Protected Areas

Background regional information on protected marine benthic habitats and species, in relation to the survey area, has been detailed in the Environmental Features Report (Fugro, 2022a) and summarised in Table 1.3 and illustrated in Figure 1.1. The survey area also overlaps the southern North Sea Special Area of Conservation (SAC), which is designated for the Harbour porpoise *Phocoena phocoena*, which is an Annex II species. Hamford Water is also designated as SAC for the Fisher's estuarine moth *Gortyna borelii lunata*, which is an Annex II species.

Table 1.3: Summary of nearby protected areas, Five Estuaries Offshore Site Investigation

Protected Area	Status	Distance* [km]	Direction*	Protected Habitats/Species
Margate and Long Sands	SAC		sed by able route	Annex I habitats Sandbanks which are slightly covered by sea water all the time
Essex Estuaries	SAC	14	SW	 Annex I habitats Estuaries Mudflats and sandflats not covered by seawater at low tide Salicornia and other annual colonising mud and sand Spartina swards (Spartinion maritimae) Atlantic salt meadows (Glauco-Puccinellietalia maritimae) Mediterranean and thermo-Atlantic halophilous scrubs (Sarcocornetea fruticosi) Sandbanks which are slightly covered by sea water all the time
Blackwater, Crouch, Roach and Colne Estuaries	MCZ	5.5	SW	UK BAP priority and OSPAR T&D species and habitats Native oyster (Ostrea edulis) beds Native oyster (Ostrea edulis) Broad-scale habitat Intertidal mixed sediments
Orford Inshore	MCZ	13	NW	Broad-scale habitat Subtidal mixed sediments
Kentish Knock East	MCZ	8	S	Broad-scale habitats Subtidal coarse sediment

Protected Area	Status	Distance* [km]	Direction*	Protected Habitats/Species
				Subtidal sandSubtidal mixed sediments
Outer Thames Estuary	SPA		sed by able route	 Red-throated diver (Gavia stellata) Common tern (Sterna hirundo) Little tern (Sternula albifrons)
Hamford Water	SPA	3	N	 Avocet (Recurvirostra avosetta) Black-tailed godwit (Limosa limosa islandica) Dark bellied brent goose (Branta bernicla bernicla) Grey plover (Pluvialis squatarola) Redshank (Tringa tetanus) Ringed plover (Charadrius hiaticula) Shelduck (Tadorna tadorna) Little tern (Sternula albifrons) Teal (Anas crecca)
Colne Estuary	SPA	10	SW	 Little tern (Sternula albifrons) Common pochard (Aythya farina) Dark bellied brent goose (Branta bernicla bernicla) Hen harrier (Circus cyaneus) Ringed plover (Charadrius hiaticula) Redshank (Tringa totanus)
Deben Estuary	SPA	13	N	 Avocet (Recurvirostra avosetta) Dark bellied brent goose (Branta bernicla bernicla)
Stour and Orwell Estuaries	SPA	14	W	 Hen harrier (Circus cyaneus) Black-tailed godwit (Limosa limosa islandica) Dunlin (Calidris alpina alpina) Grey plover (Pluvialis squatarola) Pintail (Anas acuta) Redshank (Tringa totanus) Ringed plover (Charadrius hiaticula) Shelduck (Tadorna tadorna) Turnstone (Arenaria interpres)
Alde-Ore Estuary	SPA	14	N	 Avocet (Recurvirostra avosetta) Lesser black-backed gull (Lucus fuscus) Little tern (Sternula albifrons) Marsh harrier (Circus aeruginosus) Redshank (Tringa totanus) Ruff (Philomachus pugnax) Sandwich Tern (Sterna sandivicensis

Notes

* = Distance and direction from closest sampling site

MCZ = Marine Conservation Zone

SAC = Special Area of Conservation

SPA = Special Protection Area

UK BAP = United Kingdom Biodiversity Action Plan

OSPAR T&D = Oslo and Paris List of threatened and/or declining species and habitats

SSSI = Site of Special Scientific Interest

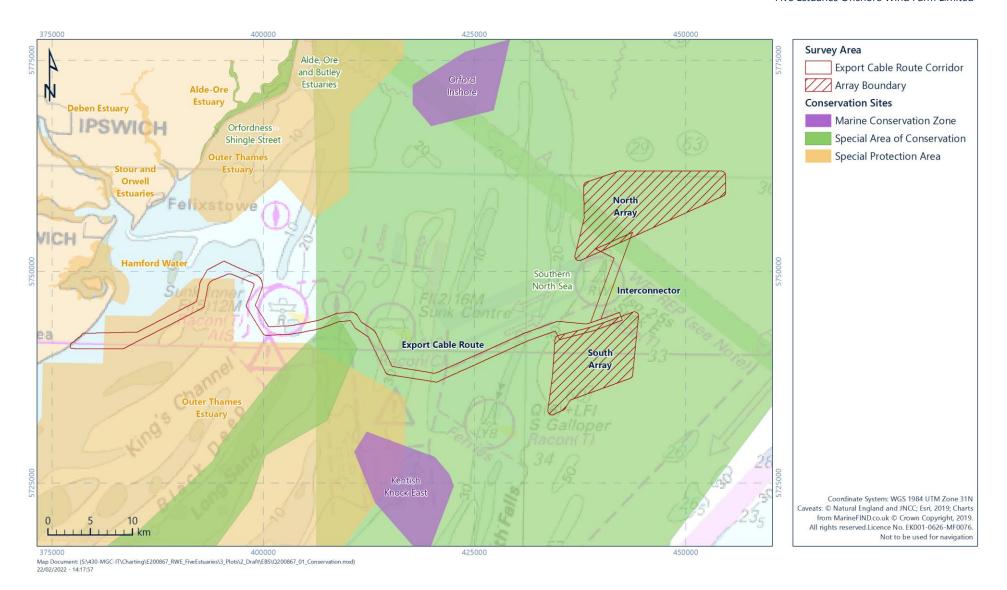


Figure 1.1: Protected areas relevant to the survey area, Five Estuaries Offshore Site Investigation

1.5 Environmental Quality Standards for Sediment Chemical Concentrations

Sediment quality guidelines (SQGs) to evaluate the chemical concentrations included:

- The effects range low (ERL) and effects range median (ERM) concentrations (OSPAR, 2014);
- The Centre for Environment, Fisheries and Aquaculture Science (Cefas) Guideline Action Levels (ALs) for the disposal of dredged material (Marine Monitoring Organisation [MMO], 2015);
- The Canadian SQGs for the Protection of Aquatic Life (Canadian Council of Ministers of the Environment [CCME], 2022).

The ERL value is defined as the lower tenth percentile of the dataset of concentrations in sediments associated with biological effects; the ERM is defined as the median (or 50th percentile) of the concentrations associated with biological effects (OSPAR, 2009). Adverse effects on organisms are rarely observed when concentrations fall below the ERL, whilst are often or always observed at concentrations above the ERM (OSPAR, 2009). The numerical values of ERL and ERM were derived from biological toxicity assays and synoptic sampling and are incorporated in SQGs developed for the National Oceanic and Atmospheric Administration (NOAA) National Status and Trends program, as informal tools to evaluate whether a contaminant concentration in sediment might have toxicological effects (Long et al., 1995).

The UK adopts the ERLs as a signatory of the Oslo and Paris (OSPAR) Convention for the assessment of monitoring data of hazardous substances in the environment (OSPAR, 2014), delivering its commitment through the Clean Seas Environmental Monitoring Programme (CSEMP). Some ERLs, however, have not been used in the OSPAR assessment, because their values are less than the OSPAR Background Assessment Concentration (BAC) used to evaluate the contamination status of marine sediment across the OSPAR maritime area. This is the case of the metals arsenic and nickel (OSPAR, 2009). Background Assessment Concentrations are normalised to 5 % aluminium, while no normalisation is made when deriving the ER values (OSPAR, 2009).

The CSEMP extracts data from the Marine Environment Monitoring and Assessment National (MERMAN) database. Fifteen marine stations around England and Wales are monitored by Cefas as part of the CSEMP programme (Cefas, 2012). Of these, station 475, in the Outer Thames Gabbard area, was referred to for regional contextualisation of this study's results.

The Cefas ALs are non-statutory guidelines to determine whether dredged material is suitable for disposal at sea by providing a proxy risk assessment for potential impacts to biological features such as fish and benthos (Mason et al., 2022). In general, concentrations below Cefas AL1 are of no concern, whilst concentrations above Cefas AL2 indicate that dredged material is unsuitable for disposal at sea. Values between Cefas AL1 and AL2 may require further investigatory work prior to a disposal decision (MMO, 2015).

The Canadian SQGs for the Protection of Aquatic Life are numerical concentrations or narrative statements intended to protect all forms of freshwater and marine (including estuarine) aquatic life for an indefinite period of exposure to substances associated with seabed sediments (CCME, 2022). The guidelines consist of threshold effects levels (TELs) and probable effects levels (PELs). Together, they are used to identify three ranges of chemical concentrations for biological effects:

- 1. Values below TEL indicate the minimal effect range within which adverse effects rarely occur;
- 2. Values between TEL and PEL indicate the possible effect range where adverse effects occasionally occur;
- 3. Values above the PEL indicate the probable effect range within which adverse effects frequently occur.

1.6 Coordinate Reference System

All coordinates detailed in this report are referenced to World Geodetic System 1984 (WGS 84), Universal Transverse Mercator (UTM) projection Zone 31N central meridian 3° East (CM 3° E). Table 1.4 provides the detailed geodetic and projection parameters.

Table 1.4: Project geodetic and projection parameters

rable 1.4. Project geodetic and project	Table 1.4. Project geodetic and projection parameters			
Global Navigation Satellite System (GNSS) Geodetic Parameters				
Datum:	World Geodetic System 1984 (WGS 84)			
Spheroid:	World Geodetic System 1984			
Semi major axis:	a = 6 378 137.000 m			
Reciprocal flattening:	1/f = 298.257 223 563			
Project Projection Parameters				
Grid Projection:	Universal Transverse Mercator (UTM)			
UTM Zone:	31N (EPSG: 32631)			
Central Meridian:	3° 00′ 00″ East			
Latitude of Origin:	00° 00′ 00″ North			
False Easting:	500 000 m			
False Northing:	0 m			
Scale factor on Central Meridian:	0.9996			
Units:	metre			
Notes EPSG = European Petroleum Survey Group				

2. Survey Strategy

2.1 Geophysical Data

The geophysical scope of work, detailed in Fugro (2021a; 2022b) comprised acquisition of data in the north and south arrays and along the interconnector and the ECR. Geophysical data were acquired using a multibeam echosounder (MBES), side scan sonar (SSS), sub-bottom profiler (SBP), single magnetometer and single-channel sparker.

2.2 Environmental Data

The environmental survey strategy was outlined by Five Estuaries OWF (2021).

A total of 17 environmental sampling stations was predetermined by Fugro environmental scientists and approved by the client. Of these, eight stations were in the north array (denoted with prefix FE1), six were in the south array (denoted with the prefix FE2) and three were along the interconnector (denoted with the prefix FE3).

Acquisition of drop-down video (DDV) and photographic data was proposed prior to obtaining macrofaunal and physico-chemical grab samples. Acquisition of single sediment samples for chemistry analysis was proposed at three stations, one in each of the arrays and one along the interconnector. Selection of stations for chemistry samples considered the spread across the survey area targeting locations with the greatest predicted mud content, through review of geophysical data.

One DDV sample was proposed to target areas of hard/coarse substrates as identified following a review of the geophysical data. Two DDV transects were proposed in areas of potential conservation importance, referred to as 'areas of focus'.

Rationale for the environmental survey strategy was based on an initial review of publicly available regional data and aligned with the approach agreed with Natural England, the Marine Management Organisation and Cefas. The sample locations were further refined based on the findings of the geophysical survey. Additional stations/transects were selected after a review of the SSS and bathymetric data, with emphasis on areas of potential conservation importance (e.g. Annex I listed habitats), as well as boundaries between areas of differing sonic reflectivity, bathymetric highs and lows and areas characteristic of the general background conditions of the site.

Table 2.1 provides the coordinates, proposed data acquisition and rationale for each location. Acceptable sampling accuracy was agreed with the client within 50 m of the target location. If after three attempts, no sample was attained, the station would be relocated by 50 m and sampling re-attempted. If no sample was acquired following the 50 m relocation, the station would be abandoned.

Figure 2.1 presents the proposed survey locations overlaid on the SSS.

Table 2.1: Proposed sampling stations, main array, Five Estuaries Offshore Site Investigation

Geodetic	Parameters: W	GS 84, UTM 31N	l, 3°E [m]	
Station	Easting	Northing	Rationale	Data and Sample Acquisition
North Arr	ay			
FE1_01	437 904.9	5 754 004.2	Irregular rough seafloor feature to investigate through DDV transect; DG added as likely best option for mud content for FE1 location; ('area of focus')	Video and stills FA, PSD, PC
FE1_02	439 440.8	5 759 631.3	Localised rough feature to investigate through DDV transect; evidence of trawling in area	Video and stills FA, PSD
FE1_03	439 237.0	5 755 430.0	Sand waves on/off ridge	FA, PSD
FE1_04	440 530.0	5 757 411.0	Representative of larger area of FE1_02; mixed rough ground with areas of sand ripples; low potential of hard/coarse substrate to investigate through DDV sample	Video and stills FA, PSD
FE1_05	442 807.0	5 755 913.0	Representative of larger area with rougher signature; sediments potentially less mixed than those of stations to the west, with sand ripples and mega-ripples	FA, PSD
FE1_06	442882.0	5760008.2	Representative of larger area; transitory area of rippled sand, containing FE1_05, FE1_07 & FE1_08, to south and east and area to west	FA, PSD
FE1_07	447 081.0	5 758 229.0	Sand ripples and waves representative of eastern half of FE1	FA, PSD
FE1_08	450 866.0	5 759 026.0	Sand ripples and waves	FA, PSD
South Arr	ay			
FE2_01	435 851.0	5 742 898.0	Representative of wider area; section to west of larger sand ripples and waves; potentially mixed sediments interspersed with sand ripples; central to ECR to FE4	FA, PSD, PC
FE2_02	436 225.0	5 741 075.0	Representative of potentially mixed sediments and sand ripples, approximately 700 m wide area running NE/SW, transitional from FE2_01 to larger sand waves and ripples area to the west	FA, PSD
FE2_03	437 540.0	5 737 498.0	Representative of sand waves and ripples, approximately 3 km wide, running centrally NE/SW through FE2	FA, PSD
FE2_04	439 870.0	5 742 101.0	Representative of sand waves and ripples, approximately 3 km wide, running centrally NE/SW through FE2	FA, PSD
FE2_05	442 677.0	5 743 137.0	Representative of area west of sand waves and ripples area; signature similar to that of FE2_02, potentially mixed sediments interspersed with sand ripples	FA, PSD

Geodetic Parameters: WGS 84, UTM 31N, 3°E [m]					
Station	Easting	Northing	Rationale	Data and Sample Acquisition	
FE2_06	441 940.3	5 739 316.1	Representative of area west of sand waves and ripples area; signature similar to that of FE2_02, potentially mixed sediments interspersed with sand ripples	FA, PSD	
Interconne	ector				
FE3_01	440 936.2	5 748 447.8	Representative of potentially mixed sediments large area; smoother signature than that of sand ripples and waves located to the north and south of interconnector, interspersed with some rougher signatures and sand ripples; evidence of trawling throughout	FA, PSD, PC	
FE3_02	439 733.8	5 745 513.7	Representative rough area with sand waves and ripples to the north and south of interconnector, interspersed with smooth signatures of potentially mixed sediments as those of FE3_02	FA, PSD	
FE3_03	442 019.7	5 751 415.1	Representative of transitory area between smooth area as that FE3_01 and area of sand waves and ripples to the west and north; station located in smooth signature, representative of potentially mixed sediments	FA, PSD	

Notes

DDV = Drop-down video

DG = Day grab

FA = Faunal sample A

PC = Physico-chemical sample

PSD = Particle size distribution

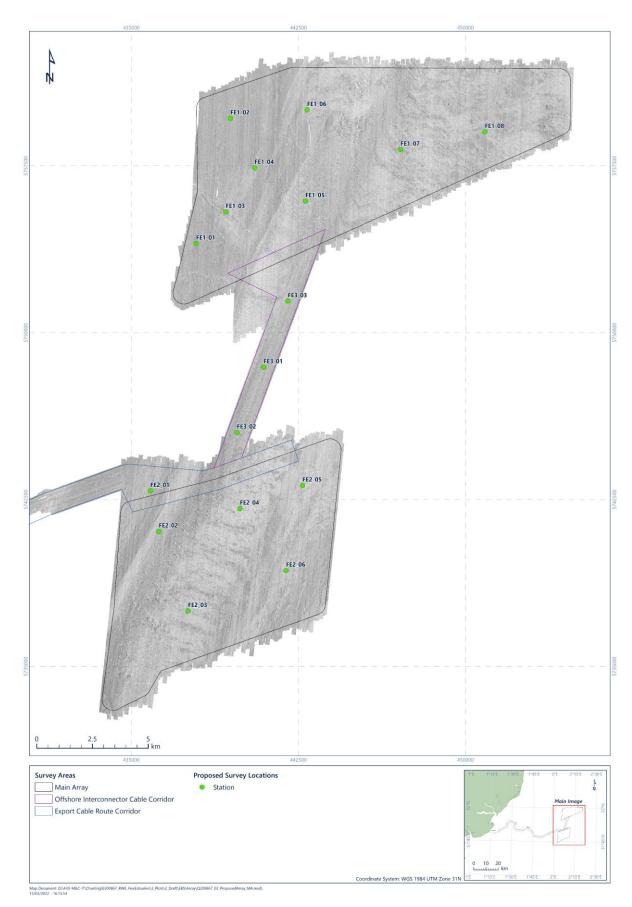


Figure 2.1: Proposed survey locations overlaid on a side scan sonar mosaic, main array, Five Estuaries Offshore Site Investigation

3. Methods

3.1 Survey Methods

Survey methods have been presented in the Acquisition/Operations Report (Fugro, 2021b, 2021c) and are summarised below.

3.1.1 Seabed Video and Photography

Operational procedures for seabed photography followed those outlined in Hitchin et al., (2015). Seabed photography was acquired using a Subsea Technology and Rentals (STR) deep-sea camera system mounted within a purpose-built camera frame complete with one high-definition video camera, one high resolution stills camera, a separate strobe and four light-emitting diode (LED) lamps.

Seabed video photographic data were displayed on a computer monitor and recorded directly onto a local hard drive. A video overlay was used to overlay a navigation string from the Hemisphere differential GPS, including the time, date, depth and location (easting and northing). The survey location and station number were also displayed (manually updated). The stills camera imagery was visible on a second window of the computer. Photographic data were viewed in real time via a sonar cable, assisting in the control of the camera in the water. Two lasers were set up 17 cm apart to provide a scale.

In areas of poor visibility, seabed photography was acquired also using the back-up Bowtech SeaKnight underwater camera system mounted within a freshwater frame.

3.1.2 Sediment Sampling

Samples for faunal and sediment particle size distribution (PSD) analysis were acquired using a 0.1 m² mini Hamon grab. Samples for chemistry analysis were acquired using a 0.1 m² Day grab.

Appendix B provides further details of survey methods.

3.2 Laboratory Methods

A sample delivery log accompanied the samples to Fugro laboratories as part of the chain of custody. Upon receipt of samples at Fugro laboratories, sample handling and labelling of each sample was inspected to ascertain correct storage in line with the sampling methods. Any potential deviations from sampling methods are addressed and resolved at this stage in line with Fugro's Quality Assurance Management System.

3.2.1 Sediment Characteristics

3.2.1.1 Particle Size Distribution

Sediment samples were analysed by Fugro using dry sieve analysis and laser diffraction.

Dry sieve PSD analysis was undertaken in accordance with FGBML in-house methods based on the North East Atlantic Marine Biological Association Quality Control (NMBAQC) scheme's best practice guidance document – Particle Size Analysis (PSA) for Supporting Biological Analysis: 2016 (Mason, 2016), and British Standards (BS) 1377: Parts 1: 2016 and 2: 1990). Representative material > 1 mm was split from the bulk sub-sample and oven dried before being sieved through a series of sieves with apertures corresponding to 0.5 phi intervals between 63 mm and 1 mm as described by the Wentworth scale (Wentworth, 1922). The weight of the sediment fraction retained on each mesh was subsequently measured and recorded.

Laser diffraction PSD analysis was undertaken in accordance with FGBML in-house methods based on Mason (2016), and BS International Organization for Standardization (ISO) 13320: 2020. Representative material < 1 mm was removed from the bulk subsample for laser analysis, with a minimum of three triplicate analyses performed using the laser sizer at 0.5 phi intervals between < 1 mm to < 0.04 μ m. Laser diffraction was carried out using a Malvern Mastersizer 2000 with a Hydro 2000G dispersion unit.

3.2.2 Sediment Hydrocarbons

The sediment samples were analysed for total hydrocarbon content (THC) and polycyclic aromatic hydrocarbons (PAHs) by SOCOTEC.

3.2.2.1 Total Hydrocarbon Content

Anhydrous sodium sulphate, sodium chloride and dichloromethane (DCM) were added to a portion of the sample and vigorously agitated. The sample was placed in an ultrasonic bath and then centrifuged. The extract was then analysed by ultraviolet fluorescence screening and quantified by comparing the results against a forties oil calibration curve.

3.2.2.2 Polycyclic Aromatic Hydrocarbons (PAH)

Methanol and DCM were added to a portion of the sample and mixed on a magnetic stirring plate. The solvent extract was then water partitioned and concentrated to a low volume. A double clean-up stage was employed to remove contaminants that may interfere with the analysis. The extract was then analysed by gas chromatography – mass spectrometry (GC-MS) and quantified by comparing the results against a calibration curve for each of the target analytes.

3.2.3 Sediment Metals

The sediment samples were analysed for trace and heavy metal content by SOCOTEC using an aqua regia digest. The eleven metals analysed were aluminium, arsenic, barium, cadmium, chromium, copper, lead, mercury, nickel, tin and zinc. A portion of air dried and ground sample was digested with aqua regia. Once cooled, the extract was filtered and pre-diluted before being analysed by inductively coupled plasma-mass spectrometry (ICP-MS) (or by

inductively coupled plasma-optical emission spectrometry (ICP-OES) and quantified by comparing the results against a calibration curve for each of the target analytes.

This analytical technique provides a strong partial digest, releasing into solution metals associated with the fines fraction within the sediments (but does not extract all trace elements associated with the coarse fraction). The concentrations of metals released by an aqua regia digest are considered indicative of those influencing biological interactions, as the released metals are not incorporated into the mineral matrix and are therefore potentially available for biological uptake.

3.2.4 Sediment Polychlorinated Biphenyls

Sediment samples were analysed by SOCOTEC using solvent extraction and clean-up followed by gas chromatography coupled to a triple quadruple mass spectrometer (GC-MS-MS) analysis. A portion of air-dried and sieved sample was spiked with ¹³C labelled internal standards, ultrasonically solvent extracted and concentrated under nitrogen. A clean-up stage was employed to remove contaminants that may interfere with the analysis. The sample extract was analysed by GC-MS-MS and quantified by comparison with a solution containing each of the targeted compounds, normalised to the ¹³C labelled internal standards.

3.2.5 Sediment Organotins

Sediment samples were analysed by SOCOTEC using solvent extraction and derivatisation followed by GC-MS analysis. A portion of the sample was digested with hydrochloric acid and methanol before being extracted into toluene. The extract was then derivatised using sodium tetraethylborate before concentration and a copper/silica clean-up was performed. The extract was analysed by GC-MS and quantified by comparing the results against a calibration curve for each of the target analytes.

3.2.6 Organochlorine Pesticides (OCPs)

Sediment samples were analysed by SOCOTEC using solvent extraction and clean-up followed by GC-MS-MS analysis.

3.2.7 Sediment Macrofauna

Samples were analysed at FGBML's benthic laboratory in accordance with Fugro in-house quality assured procedures (EUAF-FGBM-BEN-TM-001), which are consistent with the requirements of the NMBAQC scheme (Worsfold et al., 2010) and the relevant ISO standards for macrobenthic analysis. Fugro's operations are covered by a Procedures Manual and Methods Manual. These documents together with Fugro working practices are routinely audited under ISO 9001:2015 and/or United Kingdom Accreditation Service (UKAS) 17025 as appropriate. Samples were sieved over a 1.0 mm mesh sieve and taxa were identified to the lowest taxonomic level and enumerated. Sessile colonial epifauna was recorded as present (P).

Species nomenclature is consistent with that of World Register of Marine Species (WoRMS Editorial Board, 2022). The taxonomic order is based on Species Directory codes (Howson & Picton, 1997). Taxa of doubtful identification due to damage of specimen or unresolved taxonomic status are indicated by a question mark preceding the genus (e.g. ?Capitella) or species (e.g. Capitella ?capitata) name.

Biomass analysis was undertaken on the infauna from the grab samples, following identification and enumeration. The infauna from each sample was sorted into seven groups, to include Oligochaeta, Polychaeta, Crustacea, Mollusca, Echinodermata, Cnidaria (including only burrowing species) and other phyla. Nematoda, Copepoda and Astrorhiza were not required to be extracted, enumerated or identified. Biomass was undertaken using the wet blot method.

3.3 Data Analysis

Summary statistics (minimum, maximum, mean, standard deviation) for all reported datasets were derived in Excel.

3.3.1 Sediment Particle Size Distribution Statistics

Data from the sieve and laser analysis were merged and entered in Gradistat version 8 (v8) (Blott, 2010) to derive statistics including cumulative percentage of each particle size passing through each sieve, percentage retained on each sieve stack, mean and median grain size, bulk sediment classes (percentage fines, sand and gravel), skewness and sorting coefficients, and Folk (1954) classification. Table 3.1 summarises the sediment PSD statistics that were calculated using Gradistat v8. Statistics are based on the Folk and Ward (1957) method.

The Wentworth (1922) sediment classification is based on mean sediment particle size. The Folk (British Geological Survey [BGS] modified) classification (Long, 2006) is based on percentages of main sediment fractions (fines, sand and gravel). Results are reported in micron (μ m) and phi (φ) measurement units. Phi is a logarithmic scale which allows particle size data to be expressed in unit of equal value for graphical plotting and statistical calculations; the scale is based on the relationship:

Phi $(\phi) = -log 2d$, where d is the particle size diameter in mm.

Table 3.1: Sediment particle size distribution statistics

Statistic	Definition and Descriptive Terminology
Mean	The arithmetic mean of all the sediment particles in a sample; expressed in metric and phi units
Median	A measure of central tendency, that is the midpoint of the grain size distribution where half of the sediment grains resides above this point and half below
Mode	The peak of the frequency distribution, that is the particle size (or size range) most commonly found in the distribution
Modality	A measure of the number of peaks in the frequency distribution
Sorting	A measure of the grain size range and magnitude of their spread around the mean, presented as a coefficient and descriptor (as a range of values)

Statistic	Definition and Descriptive Terminology
Skewness	A measure of the degree of symmetry, presented as a coefficient and descriptor (as a range of values)

3.3.2 Sediment Macrofauna Data Rationalisation

Prior to analysis, the macrofaunal dataset was rationalised. To avoid spurious enhancement of the species list, damaged taxa were removed whereas some taxa were merged with a higher corresponding taxon identified. Juveniles were also removed as they represent an ephemeral stage of the macrofaunal community and are, therefore, not representative of prevailing benthic conditions. Sessile colonial epifauna recorded as P was also removed prior to analysis and assessed separately from the enumerated data set.

3.3.3 Sediment Macrofaunal Univariate Analysis

Table 3.2 summarises the univariate statistics derived from PRIMER (v7).

Table 3.2: Macrofaunal univariate statistics

Statistic	Definition	
Number of taxa (S)	Count of taxa	
Abundance (N)	Count of individuals	
Margalef's index of richness (d)	A measure of the number of species present for a given number of individuals	
Shannon-Wiener index of diversity (H'log ₂)	A measure of the number of taxa in a sample and the distribution of abundance across these taxa; results were assessed in line with the threshold values in Dauvin et al. (2012): High diversity (H'log ₂ > 4.00); Good diversity (3.00 < H'log ₂ < 4.00); Moderate diversity (2.00 < H'log ₂ < 3.00); Poor diversity (1.00 < H'log ₂ < 2.00); Bad diversity (H'log ₂ < 1.00).	
Pielou's index of evenness (J')	A measure of how evenly distributed the individuals are among the different species	
Simpson's index of dominance (λ)	A measure of dominance whereby its largest value corresponds to assemblages the total abundance of which is dominated by one or very few of the taxa present	

3.3.4 Biomass Analysis

The macrofaunal blotted wet weight biomass dataset was converted to ash free dry weight (AFDW) by applying the appropriate standard corrections, as outlined in Eleftheriou and Basford (1989). Table 3.3 summarises the corrections applied.

Table 3.3: Macrofaunal standard biomass corrections by phyla

Phyla	Standard Biomass Correction [%]
Annelida	15.5
Arthropoda	22.5
Mollusca	8.5

Phyla	Standard Biomass Correction [%]		
Echinodermata	8.0		
Other Taxa	15.5		
Notes Standard biomass corrections to convert blotted wet weight to ash free dry weight, from Eleftheriou & Basford (1989)			

3.3.5 Multivariate Analysis

Table 3.4 summarises the multivariate analysis undertaken for macrofaunal and sediment datasets in PRIMER v7 (Clarke & Gorley, 2015). Data transformation was undertaken prior to multivariate analysis, where deemed necessary. Transformation was applied to sediment particle size data to reduce the degree of skewness and allow optimal performance of the multivariate analysis (detailed in Section 4.2.2). Transformation was applied to macrofaunal data matrix to reduce the influence of the numerically dominant taxa which may mask the underlying community composition (detailed in Section 4.4.1.3) (Clarke et al., 2014).

Table 3.4: Multivariate statistics

Statistic	Definition
Cluster	Hierarchical clustering, 'Cluster' analysis, groups samples based on the nearest neighbour sorting of a matrix of sample similarities using Bray Curtis similarity (for biological datasets) or Euclidean distance measure (for environmental datasets)
Dendrogram and nMDS	Dendrogram and non-metric multidimensional scaling (nMDS) ordination are outputs of Bray Curtis and Euclidean Distance similarity/distance matrices. The dendrogram is a tree-like diagram illustrating the relationships between samples based on their level of similarity. The nMDS ordinates the samples in a two-dimensional plane where the more similar samples are, the nearer they are. The extent to which these relations can be adequately represented in a two-dimensional map is expressed as the stress coefficient statistic, low values (< 0.1) indicating a good ordination with no real prospect of misleading interpretation (Clarke et al., 2014). Used together, dendrogram and nMDS allow checking adequacy and mutual consistency of both representations to ensure correct interpretation
SIMPER	Similarity Percentage analysis gauges the distinctiveness of each of the multivariate groups of samples, by listing the species that most contribute to the multivariate group in terms of abundance and frequency of occurrence
SIMPROF	Similarity profiling (SIMPROF test), to identify statistically significant sample groupings from the cluster analysis, depicted as red lines; the PRIMER default significance level of 5 % was adopted; in ecological terms the statistical relevance of SIMPROF was assessed in line with the recommendation of Clarke et al. (2008), thus 'defining coarser grouping can be appropriate if the resulting groups are always supersets of the similarity profile groups'
PCA	Principal component analysis (PCA), to identify multidimensional patterns and relationships between variables, subsequently compressed by reducing the number of dimensions without loss of information. The degree to which a 2D PCA succeeds in representing the full multidimensional information is in the percentage of the total variance expressed by the first two principal component axes. A picture which accounts for as much as 70 % to 75 % of the original variation describes the overall structure well (Clarke et al., 2014)

Statistic	Definition
BIOENV	Identifies relationships between biological and environmental variables; available in PRIMER v7 as BEST, which amalgamates the Bio-Env and Stepwise procedures, and allows to evaluate the strength of association between the variables tested and the significance level

3.3.6 Seabed Habitats and Biotopes

Habitats and biotopes within the survey area were classified in line with the hierarchical European Nature Information System (EUNIS) habitat classification (European Environment Agency [EEA], 2019), which has compiled criteria for habitat identification across Europe into a single database. Table 3.5 presents the EUNIS hierarchy, with an example of the coding system. Habitats and biotopes were classified by integrating the results of the grab sampling, detailed in this report, with the results of the video and still image analysis, detailed in the Environmental Features Report (Fugro, 2022a). Habitats and biotopes were subsequently assessed for their ecological and conservation importance drawing upon the current marine nature conservation legislation.

Table 3.5: EUNIS (EEA, 2019) biotope classification hierarchy example

Level	Example Classification Name	Example Classification Code
1. Environment	Marine habitats	A
2. Broad habitat types	Sublittoral sediments	A5
3. Main habitats	Sublittoral sand	A5.2
4. Biotope complexes	Circalittoral muddy sand	A5.26
5. Biotopes	Amphiura brachiata with Astropecten irregularis and other echinoderms in circalittoral muddy sand	A5.262

3.3.6.1 Sensitive Habitats and Species Assessments

Habitats were assessed for their conservation status using the Annex I habitat list (Joint Nature Conservation Committee [JNCC], n.d.). Sensitive habitats such as stony reefs were assessed in line with the criteria in Irving (2009) and Golding et al. (2020). Biogenic reefs such as *Sabellaria spinulosa* reefs were assessed in line with the criteria in Gubbay et al. (2007), Hendrick and Foster-Smith (2006) and Limpenny et al. (2010) and the methods in Jenkins et al., (2015). Geogenic and biogenic reefs assessments are detailed in the Environmental Features Report (Fugro 2022a).

Species were assessed for their conservation status using the Annex II species list (JNCC, n.d), the OSPAR list of threatened and/or declining species and habitats (OSPAR, 2021) and the UK BAP priority habitats and species lists (JNCC, 2019). The International Union for Conservation of Nature [IUCN] red list of threatened species (IUCN, 2022) was also consulted, although the latter is not a list of conservation priorities, rather a comprehensive inventory of the global conservation status of species and is used to assist with decision making about conserving biodiversity at local and global levels.

3.3.6.2 Cryptogenic and Non-native Species (NNS)

Species of unknown origin (cryptogenic) and NNS were assessed using pertinent literature and databases including Invasive Species Compendium (CABI, 2022), National Exotic Marine and Estuarine Species Information System [NEMESIS] (Fofonoff et al., 2022), National Biodiversity Network [NBN] (NBN, 2021), Non-native Species Secretariat [NNSS] (NNSS, 2022), Delivering Alien Invasive Species Inventories for Europe [DAISIE] (DAISIE, 2020) and World Register of Marine Species [WoRMS] (WoRMS Editorial Board, 2022).

4. Results

4.1 Field Operations

4.1.1 Bathymetry and Seabed Features

Results of the geophysical study are detailed in Fugro (2022c) with the main findings summarised below:

- Water depths in the north array ranged from 25.6 m to 59 m LAT;
- Water depths in the south array ranged from 22.2 m to 61.0 m LAT;
- Seafloor sediments were assessed by interpreting the reflectivity from the low frequency SSS, cross-correlated to the SBP;
- Three sediment classes were interpreted, namely sand, gravelly sand and muddy sand;
- Sand ripples were present across the main array sites;
- A total of 447 SSS contacts ≥ 2 m was identified and interpreted as boulders;
- A total of 1599 magnetic anomalies ≥ 5 nT peak-to-peak was identified; areas of background fluctuations in the magnetometer data were interpreted from SBP to be of geological origin;
- Three main units were interpreted from the SBP data:
 - 1. R01 interpreted as Holocene sediments
 - 2. R02 interpreted as Plio-Pleistocene
 - 3. R03 interpreted as London Clay Formation
- One additional horizon was picked in the Kingdom project but not gridded due to its limited extent:
 - H01 Pleistocene, likely base Pleistocene channels
- The depth to the top of the London Clay Formation was between 0 m and 19 m below seafloor, although it remained at or just below the seafloor across most of the main array sites.

4.1.2 Seabed Video and Photography

Seabed video data and photographic stills were successfully acquired at all proposed stations (Table 4.1).

Table 4.1: Completed DDV samples and transects, main array, Five Estuaries Offshore Site Investigation

Geodetic Parameters: WGS 84, UTM 31N, 3°E [m]										
Station		Easting	Northing	Depth [m BSL]	Length [m]	Data Acquisition				
North Array										
FE1 01	SOL	437 885.3	5 753 933.8	35	104	2 min 55 sec				
FEI_UI	EOL	437 908.6	5 754 035.4	33	104	22 stills				
FE1 02	SOL	439 412.2	5 759 537.7	39	125	3 min 28 sec				
FE 1_U2	EOL	439 437.1	5 759 660.3	39	123	15 stills				
FF1 04	SOL	440 526.4	5 757 362.2	41	101	3 min 42 sec				
FE1_04	EOL	440 537.7	5 757 462.2	41	101	24 stills				
Notes										
BSL = Below s	sea level									

SOL = Start of line

EOL = End of line

4.1.3 Sediment sampling

Grab samples were successfully acquired at all proposed stations across the VE main array survey area (Table 4.2).

Table 4.2: Completed subtidal sampling stations, main array, Five Estuaries Offshore Site Investigation

Geodetic Parameters	: WGS 84, UTM 31N, 3	°E [m]		
Station	Easting	Northing	Depth [m BSL]	Sample Acquisition
North Array				
FE1_01	437 900.5	5 754 008.1	35	FA, PSD
FE1_02	439 441.7	5 759 646.8	38	FA, PSD
FE1_03	439 233.4	5 755 425.7	39	FA, PSD
FE1_04	440 540.7	5 757 414.0	40	FA, PSD
FE1_05	442 804.7	5 755 900.6	47	FA, PSD, SC
FE1_06	442 887.4	5 760 017.8	43	FA, PSD
FE1_07	447 079.1	5 758 232.8	48	FA, PSD
FE1_08	450 856.0	5 759 015.6	48	FA, PSD
South Array				
FE2_01	435 857.3	5 742 896.9	37	FA, PSD
FE2_02	436 222.5	5 741 088.0	52	FA, PSD
FE2_03	437 539.7	5 737 482.5	50	FA, PSD, SC
FE2_04	439 887.4	5 742 099.2	50	FA, PSD
FE2_05	442 684.3	5 743 140.8	46	FA, PSD
FE2_06	441 937.1	5 739 315.4	50	FA, PSD

Geodetic Parameters: WGS 84, UTM 31N, 3°E [m]											
Station	Easting	Northing	Depth [m BSL]	Sample Acquisition							
Interconnector											
FE3_01	440 933.5	5 748 446.2	52	FA, PSD, SC							
FE3_02	439 736.7	5 745 508.7	50	FA, PSD							
FE3_03	442 021.0	5 751 430.3	52	FA, PSD							

Notes

BSL = Below sea level

SC = Sediment chemistry

PSD = Particle size distribution

FA = Faunal sample A

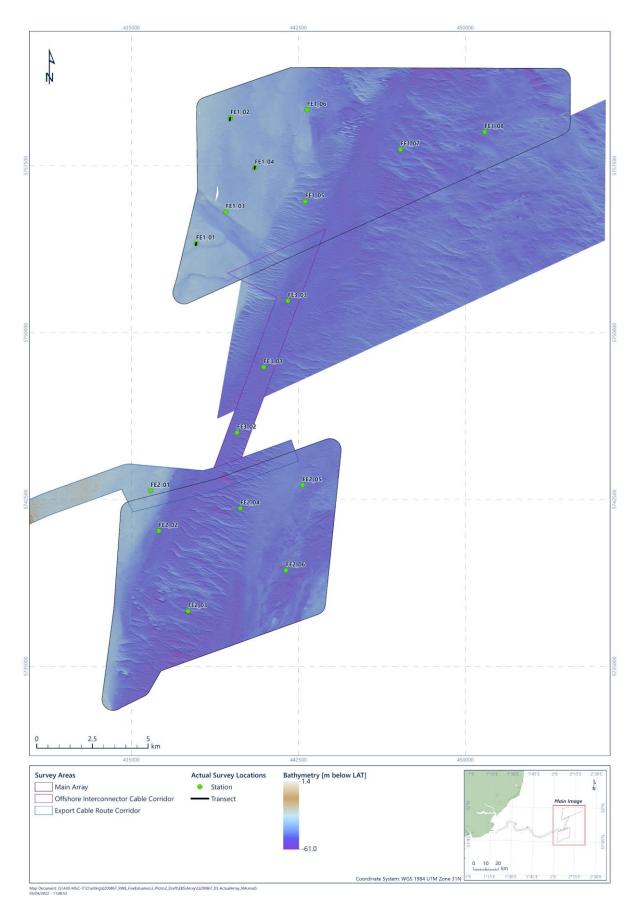


Figure 4.1: Completed survey locations overlaid on bathymetry, main array, Five Estuaries Offshore Site Investigation

4.2 Sediment Characterisation

4.2.1 Univariate Analysis

Table 4.3 presents the sediment particle size characteristics and Table 4.4 presents the sediment particle distribution across the VE main array survey area. Figure 4.2 presents an overview of the variations of the fractional composition of the sediments. Figure 4.3 presents the spatial variations of percentage sand, gravel and fines, whereas Figure 4.4 presents the spatial variation of the median sediment particle size. Figure 4.5 present the Folk (BGS modified) sediment classification and Figure 4.6 presents the Wentworth (1922) sediment descriptions. Appendix D presents the details of particle size distribution for individual stations and the analysis certificates.

Sand was the predominant sediment fraction across the VE main array survey area, with percentages ranging from 26.06 % (station FE3_02) to 98.99 % (station FE2_05), with a mean of 64.87 %. Gravel was recorded at all stations and had a content ranging from 1.01 % (station FE2_05) to 73.94 % (station FE3_02), with a mean of 30.71 %. Fines (or mud) were absent from nine stations and at the remining stations fines content ranged from 0.34 % (station FE1_04) to 47.10 % (station FE1_01) with a mean of 4.41 % (Table 4.3 and Figure 4.3). Of the fines, silt content was consistently higher that the clay content (Table 4.3 and Figure 4.2).

Stations in the south array had the greatest variation of gravel content with a range of 1.01 % to 64.11 %, whereas stations along the interconnector had the lowest variation of gravel content, with a range of 27.83 % to 73.94 %.

Station in the north array, had the largest variation of fines content, with values of up to 47.10 %, compared to maximum values of 6.00 % at stations in the south array and 6.41 % at stations along the interconnector.

Five sediment classes were identified using the Folk (BGS modified) sediment classification (Table 4.3 and Figure 4.5), including:

- 1. 'Gravelly sand', which typified six stations;
- 2. 'Sandy gravel', which typified four stations;
- 3. 'Muddy, sandy gravel', which typified three stations;
- 4. 'Sand', which typified three stations;
- 5. 'Gravelly mud', which typified one station

Of the 17 stations investigated, 5 had unimodal distributions, 2 had bimodal distributions and 10 had polymodal distributions (Table 4.4). Investigation of the particle size cumulative graphs (Appendix D) indicated that the most frequently occurring peak in the first mode was the 603.5 μ m sediment particle size (coarse sand) followed by the 426.8 μ m (medium sand), the 26 950 μ m and the 38 250 μ m, both within the coarse pebble range. The 603.5 μ m and the 426.8 μ m sediment particle sizes were the most frequently occurring also in the second mode, along with the 19 200 μ m (coarse pebble). The 9600 μ m (medium pebble) and the

6800 µm (fine pebble) sediment particle sizes were the most frequently occurring in the third mode.

The median sediment particle size ranged from 219 μ m (fine sand) (station FE1_01) to 18 268 μ m (coarse pebble) (station FE3_02) with a mean of 2847 μ m (granule) and a median of 672 μ m (coarse sand). The median sediment particle size at stations in the north array had the greatest variation, with a range of 219 μ m to 8024 μ m (Table 4.4).

The mean sediment particle size underpinned the Wentworth (1922) description, through which six grain size classes were identified (Table 4.4 and Figure 4.6), including:

- 1. 'Coarse sand', which typified five stations;
- 2. 'Very coarse sand', which typified five stations;
- 3. 'Granule', which typified three stations;
- 4. 'Pebble', which typified two stations;
- 5. 'Very fine sand', which typified one station;
- 6. 'Medium sand', which typified one station.

Of the 17 stations investigated, 10 had very poorly sorted sediments, 3 had moderately well sorted sediments, 2 had moderately sorted sediments, 1 had poorly sorted sediment and 1 had extremely poorly sorted sediment (Table 4.4).

Sediment particle distribution was very coarse skewed at 6 stations, very fine skewed at 4 stations, coarse skewed at 3 stations, fine skewed at 2 stations and symmetrical at 2 stations (Table 4.4).

Table 4.3: Summary of sediment characteristics, main array, Five Estuaries Offshore Site Investigation

	Fr	actional Compositi	on	Fir	nes	Folk Description
Station	Gravel [%]	Sand [%]	Fines [%]	Silt [%]	Clay [%]	(BGS modified)
North Array						
FE1_01	15.80	37.10	47.10	32.31	14.85	Gravelly mud
FE1_02	59.61	34.62	5.77	4.12	1.66	Muddy, sandy gravel
FE1_03	14.60	85.40	0.00	0.00	0.00	Gravelly sand
FE1_04	42.29	57.38	0.34	0.25	0.09	Sandy gravel
FE1_05	8.51	91.49	0.00	0.00	0.00	Gravelly sand
FE1_06	24.97	73.75	1.28	0.86	0.42	Gravelly sand
FE1_07	33.76	66.24	0.00	0.00	0.00	Sandy gravel
FE1_08	27.65	72.35	0.00	0.00	0.00	Gravelly sand
South Array						
FE2_01	64.11	29.88	6.00	3.62	2.39	Muddy, sandy gravel
FE2_02	3.06	96.94	0.00	0.00	0.00	Sand
FE2_03	10.16	89.84	0.00	0.00	0.00	Gravelly sand
FE2_04	1.64	98.36	0.00	0.00	0.00	Sand
FE2_05	1.01	98.99	0.00	0.00	0.00	Sand
FE2_06	59.23	35.82	4.95	2.68	2.28	Muddy, sandy gravel
Interconnector						
FE3_01	27.83	65.76	6.41	3.97	2.46	Gravelly sand
FE3_02	73.94	26.06	0.00	0.00	0.00	Sandy gravel
FE3_03	53.99	42.85	3.16	2.11	1.05	Sandy gravel
Minimum	1.01	26.06	0.00	0.00	0.00	
Maximum	73.94	98.99	47.10	32.31	14.85	
Median	27.65	66.24	0.00	0.00	0.00	-
Mean	30.71	64.87	4.41	2.94	1.48	
Standard Deviation	24.05	26.23	11.28	7.73	3.57	

Notes:

BGS = British Geological Survey

Fines = silt and clay content

Silt = $< 4.0 \text{ phi to } +8.0 \text{ phi } (< 62.5 \mu\text{m to } 3.9 \mu\text{m})$

Clay = < 8.0 phi to +10.0 phi ($< 3.9 \mu m$ to $< 0.04 \mu m$)

Table 4.4: Summary of particle size distribution, main array, Five Estuaries Offshore Site Investigation

		NA - Par		Mean F	Particle Size		Sorting Coefficient		Skewness
Station	Modality	Median [μm]	[µm]	[phi]	Wentworth (1922) Description	[µm]	Description†	[µm]	Description
North Array									
FE1_01	Polymodal	219	122	3.03	Very Fine Sand	16.75	Extremely Poorly Sorted	-0.24	Fine Skewed
FE1_02	Polymodal	8024	5288	-2.40	Pebble	8.85	Very Poorly Sorted	-0.42	Very Fine Skewed
FE1_03	Bimodal	706	848	0.24	Coarse Sand	2.01	Poorly Sorted	0.44	Very Coarse Skewed
FE1_04	Polymodal	696	1914	-0.94	Very Coarse Sand	5.70	Very Poorly Sorted	0.68	Very Coarse Skewed
FE1_05	Unimodal	606	619	0.69	Coarse Sand	1.80	Moderately Sorted	0.30	Coarse Skewed
FE1_06	Polymodal	501	1041	-0.06	Very Coarse Sand	4.29	Very Poorly Sorted	0.66	Very Coarse Skewed
FE1_07	Bimodal	640	1350	-0.43	Very Coarse Sand	4.03	Very Poorly Sorted	0.66	Very Coarse Skewed
FE1_08	Polymodal	688	1294	-0.37	Very Coarse Sand	4.00	Very Poorly Sorted	0.66	Very Coarse Skewed
South Array									
FE2_01	Polymodal	5982	3464	-1.79	Granule	7.19	Very Poorly Sorted	-0.55	Very Fine Skewed
FE2_02	Unimodal	604	609	0.72	Coarse Sand	1.54	Moderately Well Sorted	0.13	Coarse Skewed
FE2_03	Unimodal	595	625	0.68	Coarse Sand	1.79	Moderately Sorted	0.37	Very Coarse Skewed
FE2_04	Unimodal	563	568	0.82	Coarse Sand	1.48	Moderately Well Sorted	0.06	Symmetrical
FE2_05	Unimodal	489	496	1.01	Medium Sand	1.42	Moderately Well Sorted	0.08	Symmetrical
FE2_06	Polymodal	4897	3339	-1.74	Granule	6.45	Very Poorly Sorted	-0.36	Very Fine Skewed
nterconnector									
FE3_01	Polymodal	672	1218	-0.29	Very Coarse Sand	6.03	Very Poorly Sorted	0.27	Coarse Skewed
FE3_02	Polymodal	18268	7733	-2.95	Pebble	5.53	Very Poorly Sorted	-0.64	Very Fine Skewed
FE3_03	Polymodal	4255	3703	-1.89	Granule	5.39	Very Poorly Sorted	-0.14	Fine Skewed
Minimum		219	122	-2.95		1.42		-0.64	
Maximum		18268	7733	3.03		16.75		0.68	
Median	_	672	1218	-0.29	_	4.29	-	0.13	-
Mean		2847	2014	-0.33		4.96		0.11	
Standard Deviation		4626	2060	1.50		3.80		0.44	

Statistics based on Folk and Ward (1957) method derived in Gradistat (Blott, 2010)

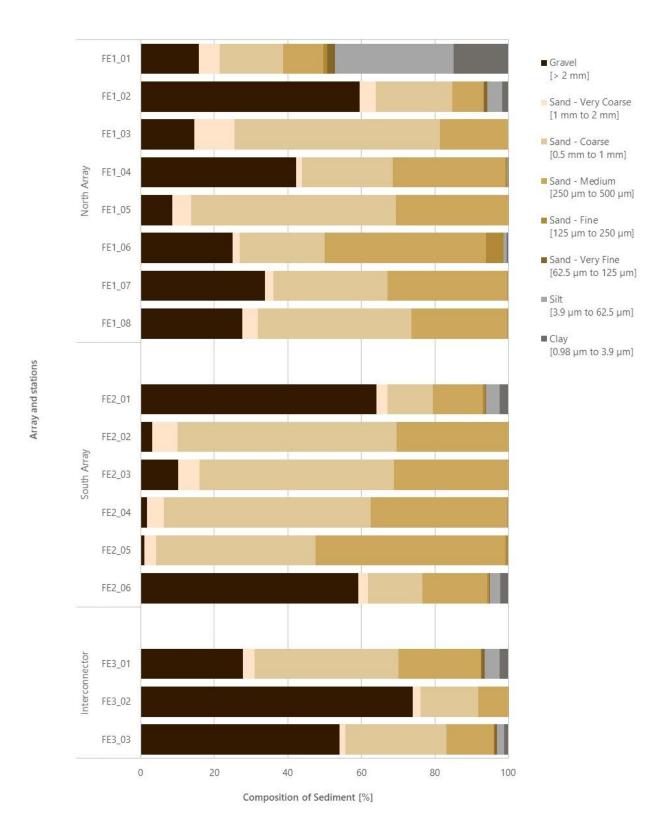


Figure 4.2: Sediment fractional composition, main array, Five Estuaries Offshore Site Investigation

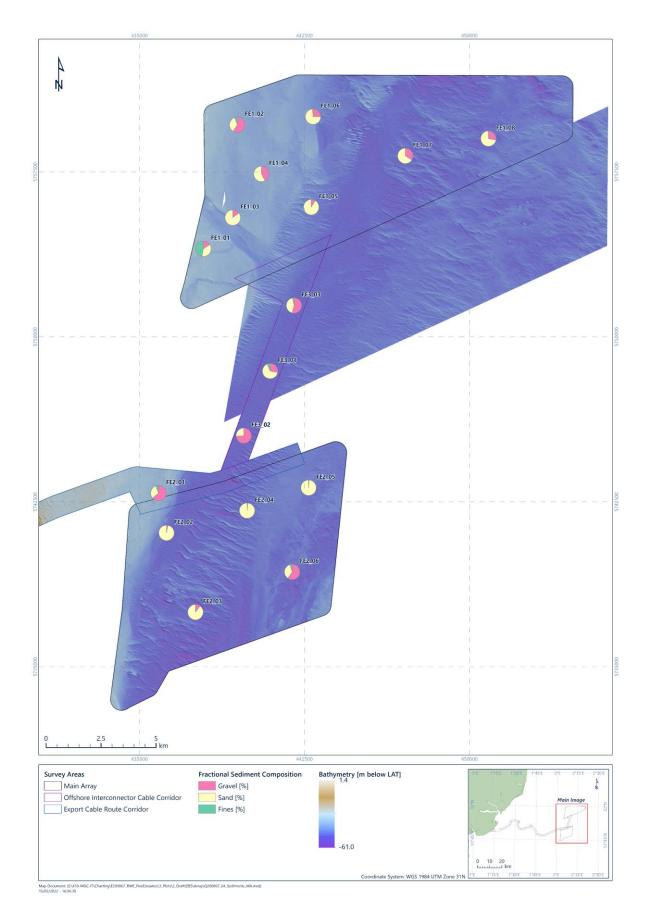


Figure 4.3: Spatial variations of percentage of sand, gravel and fines, main array, Five Estuaries Offshore Site Investigation

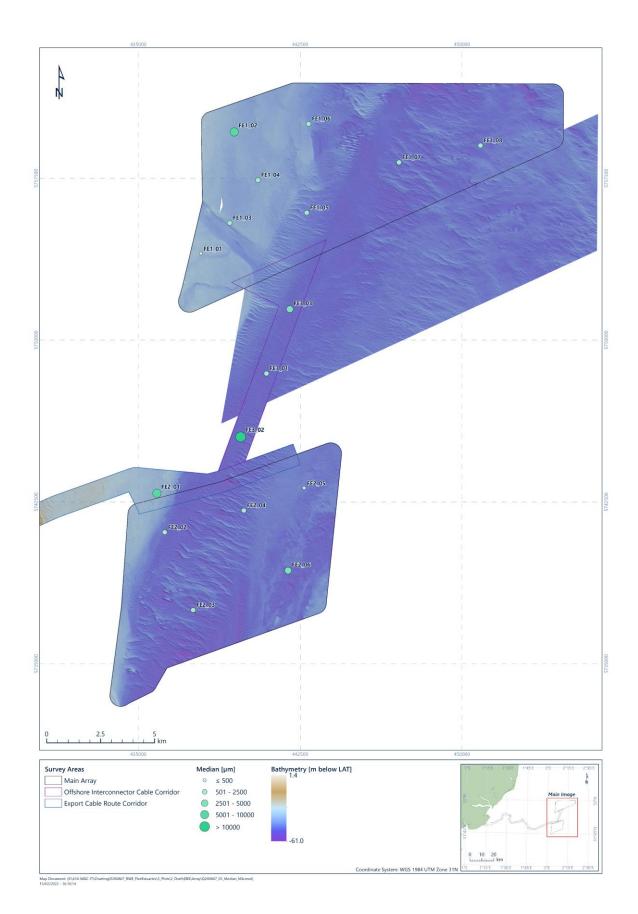
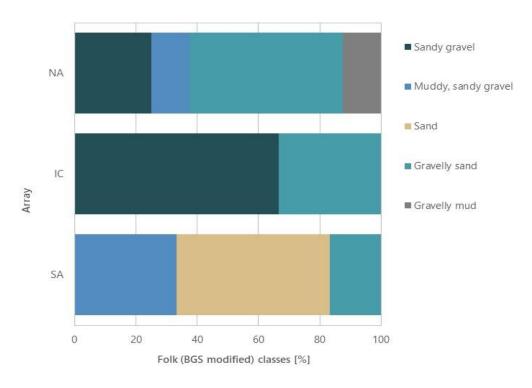



Figure 4.4: Spatial variations of the median $[\mu m]$ sediment particle size, main array, Five Estuaries Offshore Site Investigation

Notes

BGS = British Geological Survey

NA = North array

NA = North array

IC = Interconnector •

SA = South array

Figure 4.5: Folk (BGS modified) sediment description, main array, Five Estuaries Offshore Site Investigation

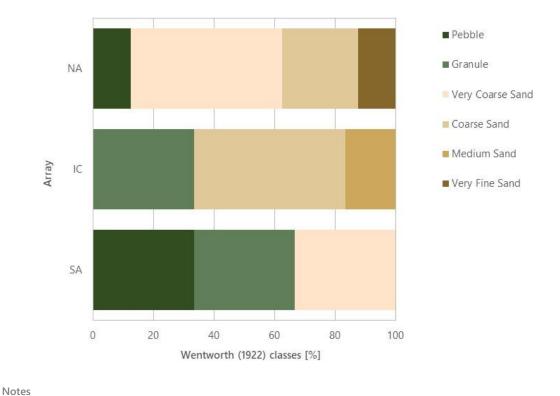


Figure 4.6: Figure 4.7: Wentworth (1922) sediment description, main array, Five Estuaries Offshore Site Investigation

IC = Interconnector *

SA = South array

4.2.2 Investigation of Granulometric Similarities

The cluster analysis, using Euclidean distance, was applied to the sediment PSD to investigate sedimentological characteristics. Data were fourth root transformed. The SIMPROF test, undertaken in conjunction with the cluster analysis, was interpreted in ecological terms and, where appropriate, coarser groups were created (see Section 3.3.5). Figure 4.8 presents the dendrogram and the nMDS of the Euclidean distance matrix of sediment particle size.

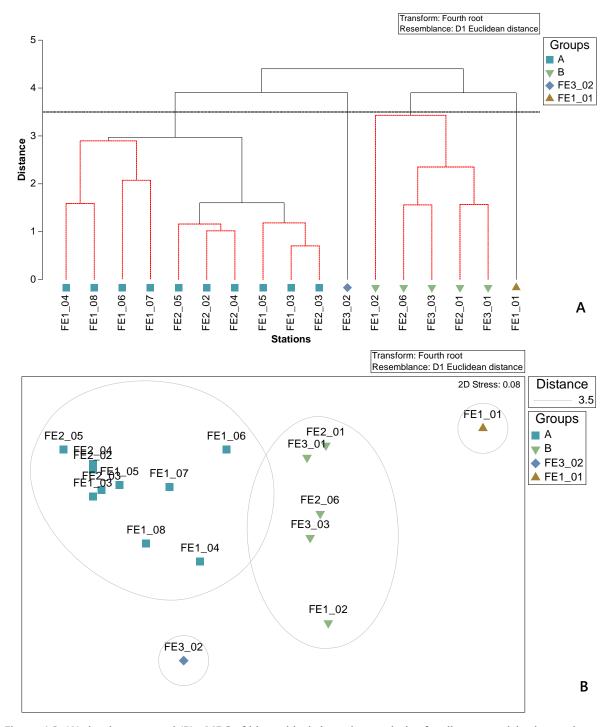
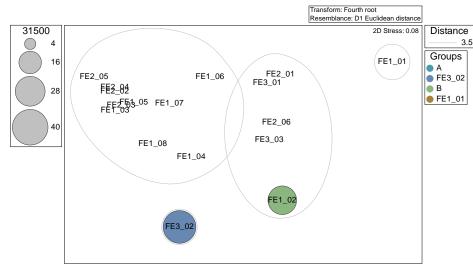


Figure 4.8: (A) dendrogram and (B) nMDS of hierarchical clustering analysis of sediment particle size, main array, Five Estuaries Offshore Site Investigation

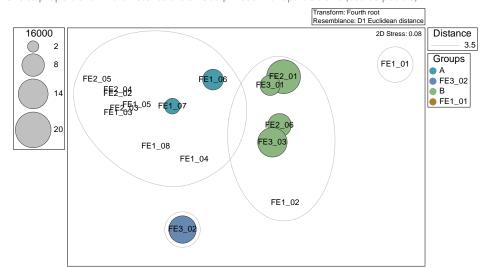
Two multivariate groups were identified at the Euclidean distance of 3.5, namely A and B, and two single stations, namely FE1_01 and FE3_02, which were different enough to separate. Groups which separated below the 3.5 Euclidean distance were not deemed of ecological significance. Table 4.5 summarises the physical characteristics of the sediment groups identified through the multivariate analysis which included:

- Group A comprised 10 stations, including 6 from the north array and 4 from the south array. Group A had an average Euclidean distance of 3.23 and was characterised by poorly sorted 'gravelly sand' (Folk BGS modified), with median sediment particle size ranging from 489 μm to 706 μm, mean of 609 μm (coarse sand), in water depth of 39 m to 52 m, mean of 46.3 m (BSL);
- Group B comprised five stations, including one from the north array, two from the south array and two from the interconnector. Group B had an average Euclidean distance of 3.74 and was characterised by very poorly sorted 'muddy sandy gravel' (Folk BGS modified), with median sediment particle size ranging from 672 μm to 8024 μm, mean of 4766 μm (fine pebble), in water depth of 37 m to 52 m, mean of 45.8 m (BSL);
- Station FE3_02, along the interconnector, was characterised by very poorly sorted 'sandy gravel', with a median sediment particle size of 18 268 μm (coarse pebble) in water depth of 50 m (BSL);
- Station FE1_01, from the north array, was characterised by extremely poorly sorted 'gravelly mud', with median sediment particle size of 219 μm (fine sand) in water depth of 35 m (BSL).

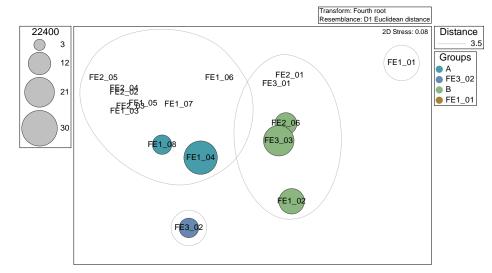
The sediment particle size primarily responsible for the separation of the multivariate groups included, the 16 000 μ m, the 22 400 μ m and the 31 500 μ m within the coarse pebble region, the 11 200 μ m (medium pebble), the 22.1 μ m (coarse silt) and the 15.6 μ m (medium silt) sediment particle sizes (Figure 4.9).

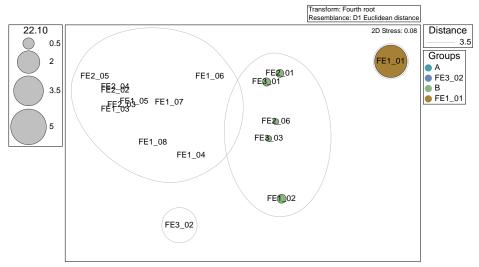

Table 4.5: Summary of physical characteristics of sediment groups identified through the cluster analysis, Five Estuaries Offshore Site Investigation

Location and stations	Depth [m.RSL]	Median Particle Size	Fractional Composition [%]		Sorting		
	[m R2F]	[µm]	Gravel	Sand	Fines	[µm]	Description
North Array (FE1_03, FE1_04, FE1_05, FE1_06, FE1_07, FE1_08) South Array (FE2_02, FE2_03, FE2_04, FE2_05)	46.3	609	16.76	83.07	0.16	2.81	Poorly sorted
North Array (FE1_02) South Array (FE2_06) Interconnector (FE3_01, FE3_03)	45.8	4766	52.95	41.79	5.26	6.78	Very poorly sorted
Interconnector	50	18268	73.94	26.06	0.00	5.53	Very poorly sorted
North Array	35	219	15.80	37.10	47.10	16.76	Extremely poorly sorted
	North Array (FE1_03, FE1_04, FE1_05, FE1_06, FE1_07, FE1_08) South Array (FE2_02, FE2_03, FE2_04, FE2_05) North Array (FE1_02) South Array (FE2_06) Interconnector (FE3_01, FE3_03) Interconnector	North Array (FE1_03, FE1_04, FE1_05, FE1_06, FE1_07, FE1_08) South Array (FE2_02, FE2_03, FE2_04, FE2_05) North Array (FE1_02) South Array (FE1_02) South Array (FE2_06) Interconnector (FE3_01, FE3_03) Interconnector 50	Location and stations Depth [m BSL] Particle Size [μm] North Array (FE1_03, FE1_04, FE1_05, FE1_06, FE1_07, FE1_08) South Array (FE2_02, FE2_03, FE2_04, FE2_05) 46.3 609 North Array (FE1_02) South Array (FE1_02) South Array (FE2_06) Interconnector (FE3_01, FE3_03) 45.8 4766 Interconnector 50 18268	Location and stations Depth [m BSL] Particle Size [μm] Gravel North Array (FE1_03, FE1_04, FE1_05, FE1_06, FE1_07, FE1_08) South Array (FE2_02, FE2_03, FE2_04, FE2_05) 46.3 609 16.76 North Array (FE1_02) South Array (FE1_02) South Array (FE2_06) Interconnector (FE3_01, FE3_03) 45.8 4766 52.95 Interconnector 50 18268 73.94	Depth [m BSL] Particle Size [mm] Gravel Sand	Depth [m BSL] Particle Size [µm] Gravel Sand Fines	Depth [m BSL] Particle Size [μm] Gravel Sand Fines [μm]


Notes

Data refer to mean values in each multivariate group except for single stations; values are fourth root transformed BSL = Below sea level





Notes
Circles proportional in diameter to the 31 500 µm sediment particle size (coarse pebble)

Notes Circles proportional in diameter to the 16 000 μ m sediment particle size (coarse pebble)

Notes

Circles proportional in diameter to the 22.1 µm sediment particle size (coarse silt)

Figure 4.9: nMDS ordination of hierarchical clustering analysis of PSD with superimposed circles proportional in diameter to percentage of particles driving the separation of groups Five Estuaries Offshore Site Investigation

4.2.2.1 Principal Components Analysis

The principal component analysis (PCA) was used to reduce the sediment PSD across all samples into a smaller number of key variables (gravel, sand and mud). This highlighted the importance of the less represented sediment fractions in accounting for grain size variations, which are critical factors in determining the associated biological communities. The PCA also allowed visual representation of the association between sediment type and biological variables. Data were fourth root transformed. All data were in percentage and therefore normalisation was not necessary.

Results of the PCA indicated that the first two principal components accounted for 98.6 % of the variation, with the percentage of mud explaining most of the variation (76.3 %) along principal component one and the percentage of gravel explaining most of the variation (22.3 %) along principal component two. Sand explained 1.1 % of the variation along principal component three.

Figure 4.10 presents the results of the PCA with, superimposed location and circles proportional, in diameter, to the percentage of mud. Mud had the greatest variation across the survey area, particularly in the north array, with a peak at station FE1_01, whereas most stations in the south array were devoid of mud. The south array had the greatest variation of gravel content, as illustrated in Figure 4.11, which present the PCA with superimposed location and circles proportional, in diameter, to the percentage of gravel. The varying proportions of mud and gravel resulted in increased heterogeneity of the sediment which was reflected in the sorting coefficient ranging from moderately well sorted for the predominantly sandy stations to extremely poorly sorted, as percentage of gravel and mud increased (Figure 4.12).

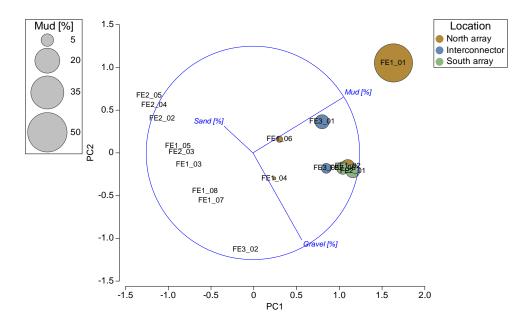


Figure 4.10: 2D PCA of sediment composition with superimposed, arrays and circles proportional in diameter to percentage of mud, Five Estuaries Offshore Site Investigation

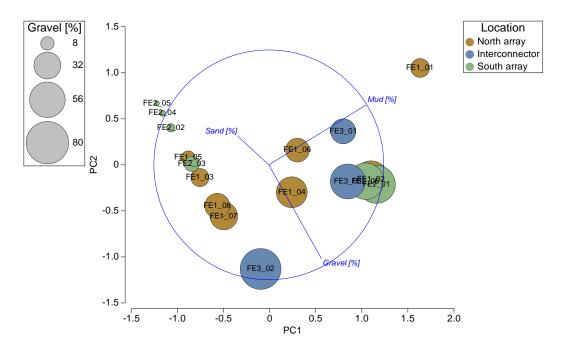


Figure 4.11: 2D PCA of sediment composition with superimposed, arrays and circles proportional in diameter to percentage of gravel, Five Estuaries Offshore Site Investigation

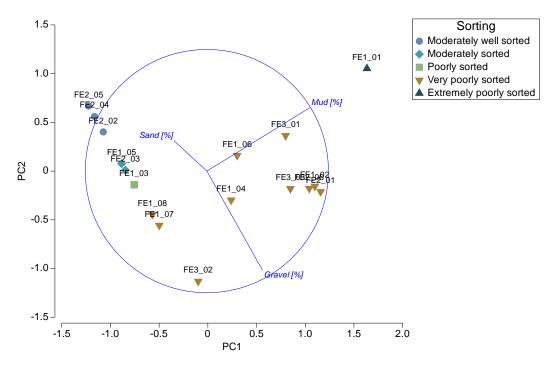


Figure 4.12: 2D PCA of sediment composition with superimposed, sorting coefficient, Five Estuaries Offshore Site Investigation

4.3 Sediment Chemistry

4.3.1 Sediment Hydrocarbons

Results of the sediment chemistry were assessed in terms of descriptive statistics, including the relative standard deviation (RSD) to indicate the extent of variability in the dataset. The RSD is defined as the ratio of the standard deviation to the mean and is expressed as a percentage. For this report, RSD of less than 30 % were considered low variability, 30 % to 70 % were considered moderate variability and more than 70 % were considered high variability.

Appendix E presents the analysis certificates.

4.3.1.1 Total Hydrocarbon Content

Table 4.6 presents the concentrations of total hydrocarbons reported from the surface sediment across the VE main array survey area. In the VE main array survey area, THC content was below the limit of detection (LOD) (1 mg/kg) in the north and south arrays and along the interconnector.

Table 4.6: Summary of sediment hydrocarbon analysis, main array, Five Estuaries Offshore Site Investigation

Station	THC
North Array	
FE1_05	< 1
South Array	
FE2_03	< 1
Interconnector	
FE3_01	< 1
Cefas Guideline Action Levels	
AL1	100
Notes Concentrations expressed in mg/kg Cefas = Centre for Environment Fisheries & Aquaculture Science THC = Total hydrocarbon content	ce

4.3.1.2 Sediment Polycyclic Aromatic Hydrocarbons (PAHs)

Table 4.7 presents the results of the polycyclic aromatic hydrocarbons (PAHs) and the marine SQGs (details in Section 1.5). Concentrations of individual PAHs were below the LOD (1 mg/kg) across the entire VE main array survey area.

Table 4.7: Summary of sediment polycyclic aromatic hydrocarbon analysis, main array, Five Estuaries Offshore Site Investigation

		Station		CEMP (OSPAR, 2014)	NOAA (Long et al., 1995)		an SQGs E, 2022)
Analyte	North Array FE1_05	South Array FE2_03	Inter connector FE3_01	ERL	ERM	TEL	PEL
Acenaphthene	< 1	< 1	< 1	-	500	6.71	88.9
Acenaphthylene	< 1	< 1	< 1	-	640	5.87	128
Anthracene	< 1	< 1	< 1	85	1100	46.9	245
Benzo[a]anthracene	< 1	< 1	< 1	261	1600	74.8	693
Benzo[a]pyrene	< 1	< 1	< 1	430	1600	88.8	763
Benzo[b]fluoranthene	< 1	< 1	< 1	-	-	-	-
Benzo[e]pyrene	< 1	< 1	< 1	-	-	-	-
Benzo[ghi]perylene	< 1	< 1	< 1	85	-	-	-
Benzo[k]fluoranthene	< 1	< 1	< 1	-	-	-	-
C1-naphthalenes	< 1	< 1	< 1	155	-	-	-
C1-phenanthrene	< 1	< 1	< 1	170	-	-	-
C2-naphthalenes	< 1	< 1	< 1	150	-	-	-
C3-naphthalenes	< 1	< 1	< 1	-	-	-	-
Chrysene	< 1	< 1	< 1	384	2800	108	846
Dibenzo[ah]anthracene	< 1	< 1	< 1	-	260	6.22	135
Fluoranthene	< 1	< 1	< 1	600	5100	113	1494
Fluorene	< 1	< 1	< 1	-	540	21.2	144
Indeno[1,2,3-cd]pyrene	< 1	< 1	< 1	240	-	-	-
Naphthalene	< 1	< 1	< 1	160	2100	34.6	391
Perylene	< 1	< 1	< 1	-	-	-	-
Phenanthrene	< 1	< 1	< 1	240	1500	86.7	544
Pyrene	< 1	< 1	< 1	665	2600	153	1398
Total	< 1	< 1	< 1	-	-	-	-

Notes

Concentrations expressed in µg/kg dry sediment

CCME = Canadian Council of Ministers of the Environment

CEMP = Coordinated Environmental Monitoring Programme

ERL = Effects range low

ERM = Effects range median

NOAA = National Oceanic and Atmospheric Administration

OSPAR = Oslo and Paris Commission

PEL = Probable effects level

SQG = Sediment quality guidelines

TEL = Threshold effects level

4.3.2 Sediment Metals

Table 4.8 summarises the concentrations of the extractable metals in the sediment samples.

Concentrations of most metals in samples from the VE main array survey area were below their respective SQGs. The exception was arsenic, the concentration of which ranged from 8.7 mg/kg (station FE1_05) to 18.8 mg/kg (station FE3_01), with a mean of 12.6 mg/kg, all values being above the Canadian TEL (7.24 mg/kg).

The highest variability of metal concentration was recorded for barium, which had RSD of 123 % and concentrations ranging from 14.2 mg/kg to 121 mg/kg, with a mean of 49.9 mg/kg.

The lowest variability of metal concentrations was recorded for copper which had RSD of 2 % and concentrations ranging from 5.2 mg/kg to 5.4 mg/kg, with a mean of 5.3 mg/kg.

The remaining metals analysed had low to moderate variability with values of RSD ranging from 12 % (zinc) to 68 % (aluminium).

Table 4.8: Summary of sediment metals analysis, main array, Five Estuaries Offshore Site Investigation

Station	Al	As	Ва	Cd	Cr	Cu	Hg	Ni	Pb	Sn	Zn
North Array											
FE1_05	1400	8.7	14.2	0.08	4.1	5.4	0.02	5.1	3.8	< 0.5	14.0
South Array											
FE2_03	827	10.2	14.6	0.06	3.1	5.4	0.01	5.5	3.1	< 0.5	11.5
Interconnector											
FE3_01	3160	18.8	121	0.08	6.9	5.2	0.02	9.6	4.4	< 0.5	14.4
Mean	1800	12.6	49.9	0.07	4.7	5.3	0.02	6.7	3.8	-	13.3
Standard deviation	1220	5.45	61.5	0.012	1.97	0.12	0.006	2.49	0.65	-	1.57
RSD	68	43	123	16	42	2	35	37	17	-	12
Cefas Guideline Acti	on Levels										
AL1	-	20	-	0.4	40	40	0.3	20	50	-	130
AL2	-	100	-	5	400	400	3	200	500	-	800
CEMP Assessment C	riteria (OSPAR, 20	14)									
ERL	-	-	-	1.20	81.0	34.0	0.150	-	47.0	-	150
National Oceanic an	d Atmospheric Ad	ministration (NOAA) Effects F	Ranges (Long	et al., 1995)						
ERM	-	70	-	9.6	370	270	0.71	51.6	218	-	410
Canadian Sediment	Quality Guidelines	(CCME, 2022)									
TEL	-	7.24	-	0.7	52.3	18.7	0.13	-	30.2	-	124
PEL	-	41.6	-	4.2	160	108	0.7	-	112	-	271
Notes Concentrations expressor Cefas action levels avail Al = Aluminium	0 0 ,	gov.uk/guidance	/marine-licensing Ba = Ba	,	sis-and-sample	-plans Cd = Cadmium		Cr = Chrom	lum.		Cu - Conna
Hg = Mercury	As = Arse Ni = Nick		ва = ва Рb = Le			Sn = Tin		Zn = Zinc	ium	,	Cu = Copper
AL1 = Action level 1		tion level 2		eau Effects range low	V	ERM = Effects r	ange median		ble effects level		
TEL = Threshold effects OSPAR = Oslo and Paris	level Cefas = C		ıment, Fisheries a				9	ental Monitoring			
Key	Below	v Cefas AL1			Above	Cefas AL1			Above (Cefas AL2	

4.3.3 Sediment Polychlorinated Biphenyls

Table 4.9 summarises the concentrations of PCBs in the sediment samples. The concentrations of all individual PCB congeners analysed were below the LOD (< 0.00008 mg/kg), and the sum of the 25 congeners was below the Cefas AL1 (0.02 mg/kg) and AL2 (0.2 mg/kg)

Table 4.9: Summary of polychlorinated biphenyls (PCBs) analysis, main array, Five Estuaries Offshore Site Investigation

Analyte	North Array	Courth Arroy		<u>~</u> .			
Analyte		30utii Array	South Array Interconnector		fas ction Levels		
	FE1_05	FE2_03	FE3_01	Guidelille A	Ction Levels		
	1 1 1 0 3	162_03	125_01	AL1	AL2		
PCB 101	< 0.00008	< 0.00008	< 0.00008	-	-		
PCB 105	< 0.00008	< 0.00008	< 0.00008	-	-		
PCB 110	< 0.00008	< 0.00008	< 0.00008	-	-		
PCB 118	< 0.00008	< 0.00008	< 0.00008	-	-		
PCB 128	< 0.00008	< 0.00008	< 0.00008	-	-		
PCB 138	< 0.00008	< 0.00008	< 0.00008	-	-		
PCB 141	< 0.00008	< 0.00008	< 0.00008	-	-		
PCB 149	< 0.00008	< 0.00008	< 0.00008	-	-		
PCB 151	< 0.00008	< 0.00008	< 0.00008	-	-		
PCB 153	< 0.00008	< 0.00008	< 0.00008	-	-		
PCB 156	< 0.00008	< 0.00008	< 0.00008	-	-		
PCB 158	< 0.00008	< 0.00008	< 0.00008	-	-		
PCB 170	< 0.00008	< 0.00008	< 0.00008	-	-		
PCB 18	< 0.00008	< 0.00008	< 0.00008	-	-		
PCB 180	< 0.00008	< 0.00008	< 0.00008	-	-		
PCB 183	< 0.00008	< 0.00008	< 0.00008	-	-		
PCB 187	< 0.00008	< 0.00008	< 0.00008	-	-		
PCB 194	< 0.00008	< 0.00008	< 0.00008	-	-		
PCB 28	< 0.00008	< 0.00008	< 0.00008	-	-		
PCB 31	< 0.00008	< 0.00008	< 0.00008	-	-		
PCB 44	< 0.00008	< 0.00008	< 0.00008	-	-		
PCB 47	< 0.00008	< 0.0008	< 0.00008	-	-		
PCB 49	< 0.00008	< 0.0008	< 0.00008	-	-		
PCB 52	< 0.00008	< 0.00008	< 0.00008	-	-		
PCB 66	< 0.00008	< 0.0008	< 0.00008	-	-		
Total	< 0.00200	< 0.00200	< 0.00200	0.02	0.2		

Notes

Concentrations expressed as mg/kg dry weight

Cefas = Centre for Environment, Fisheries and Aquaculture Science

AL1 = Action Level 1

AL2 = Action Level 2

 $Cefas\ action\ levels\ available\ at\ \underline{https://www.gov.uk/guidance/marine-licensing-sediment-analysis-and-sample-plans}$

4.3.4 Sediment Organotins

Table 4.10 summarises the concentrations of organotins in the sediment samples. The organotins analysed included dibutyltin (DBT) and tributyltin (TBT), the concentrations of which were below their respective LOD at all stations and below the Cefas AL1 (0.1 mg/kg) and AL2 (1 mg/kg).

Table 4.10: Summary of organotins analysis, main array, Five Estuaries Offshore Site Investigation

Station	Dibutyltin (DBT)	Tributyltin (TBT)			
North Array					
FE1_05	< 0.001	< 0.001			
South Array					
FE2_03	< 0.001	< 0.001			
Interconnector					
FE3_01	< 0.005	< 0.005			
Cefas Guideline Action Levels					
AL1	0.1	0.1			
AL2	1	1			
Notes Concentrations expressed as mg/kg dry weight Cefas = Centre for Environment Fisheries & Aquaculture Science AL1 = Action Level 1 AL2 = Action Level 2 Cefas action levels available at https://www.gov.uk/guidance/marine-licensing-sediment-analysis-and-sample-plans					

4.3.5 Sediment Organochlorine Pesticides

Table 4.11 presents a summary of the OCPs in the sediment samples across the VE main array survey area.

Currently, Cefas AL1 values are established for dieldrin and dichlorodiphenyltrichloroethane (DDT) (0.001 mg/kg). The p,p'-dichlorodiphenyltrichloroethane (PPDDT) is the main isomeric form of DDT and hence can be compared to the Cefas AL1 value for DDT (0.001 mg/kg).

The concentration of all OCPs analysed was consistently below the LOD (0.0001 mg/kg) and below the Cefas AL1 values, where available.

Table 4.11: Summary of organochlorine pesticides (OCP) analysis, main array, Five Estuaries Offshore Site Investigation

	Station				
	North Array	South Array	Interconnector	Cefas Guideline Action Levels	
Analyte					
	FE1_05	FE1_05 FE2_03	FE3_01		
				AL1	AL2
AHCH	< 0.0001	< 0.0001	< 0.0001	-	-
ВНСН	< 0.0001	< 0.0001	< 0.0001	-	-
GHCH	< 0.0001	< 0.0001	< 0.0001	-	-
Dieldrin	< 0.0001	< 0.0001	< 0.0001	0.005	-
НСВ	< 0.0001	< 0.0001	< 0.0001	-	-
PPTDE	< 0.0001	< 0.0001	< 0.0001	-	-
PPDDE	< 0.0001	< 0.0001	< 0.0001	-	-
PPDDT	< 0.0001	< 0.0001	< 0.0001	0.001	-

Notes

Concentrations expressed as mg/kg dry weight

Cefas = Centre for Environment Fisheries & Aquaculture Science

AL = Action level

AHCH = alpha-Hexachlorocyclohexane

 ${\sf BHCH} = {\sf beta\text{-}Hexachlorocyclohexane}$

GHCH = gamma-Hexachlorocyclohexane

HCB = Hexachlorobenzene

PPTDE = p,p'-Dichlorodiphenyldichloroethane

PPDDE = p,p'-Dichlorodiphenyldichloroethylene

PPDDT = p,p'-Dichlorodiphenyltrichloroethane

Cefas action levels available at https://www.gov.uk/guidance/marine-licensing-sediment-analysis-and-sample-plans

4.4 Sediment Macrofauna

The macrofauna from the grab samples included infauna and epifauna, the latter comprising solitary and sessile organisms. The infauna and solitary epifauna were enumerated and were analysed together in terms of phyletic composition, species diversity, abundance and distribution. The sessile colonial epifauna, recorded as P, was removed from the enumerated dataset and assessed for taxa composition and distribution. Appendix F presents the full species list.

4.4.1 Infaunal and Solitary Epifauna

4.4.1.1 Phyletic Composition

Following rationalisation (details in Section 3.3.2), the enumerated macrofaunal dataset comprised 141 taxa and 1208 individuals. The excluded taxa included juveniles, pelagic (Chaetognatha), parasitic (Bopyroidea) and damaged fauna. In addition, two species of *Leiochone* and one species of *Ericthonius*, were aggregated to their respective genera, whereas *Leptocheirus hirsutimanus* was aggregated to family level (Aoridae).

Juveniles comprised 22 taxa and 184 individuals, of which species of Ophiuridae, with 96 individuals, and Anomiidae, with 29 individuals, were numerically dominant.

Table 4.12 summarises the phyletic composition of the enumerated fauna across the VE main array survey area and Figure 4.13 presents the phyletic composition of taxa and individuals of the enumerated macrofauna.

Table 4.12: Taxonomic groups of enumerated fauna, Five Estuaries Offshore Site Investigation

Taxonomic Group	Number of Taxa	Composition of Taxa [%]	Abundance	Composition of Individuals [%]
Annelida	79	56.0	713	59.0
Arthropoda	32	22.7	124	10.3
Mollusca	20	14.2	106	8.8
Echinodermata	5	3.5	194	16.1
Other phyla	5	3.5	71	5.9
Total	141	100	1208	100

Notes

Macrofaunal samples were processed through a 1 mm sieve

Other phyla included: Chordata, Cnidaria, Nemertea, Phoronida and Platyhelminthes

Annelida comprised most of the enumerated taxa composition (56.0 %), followed by Arthropoda (22.7 %), Mollusca (14.2 %) and Echinodermata (3.5 %). Other phyla comprised 3.5 % of the taxa composition (Table 4.12) and were represented by Cnidaria (non-burrowing anemones of the order Actiniaria), *Phoronis*, Ascidiacea and Nemertea.

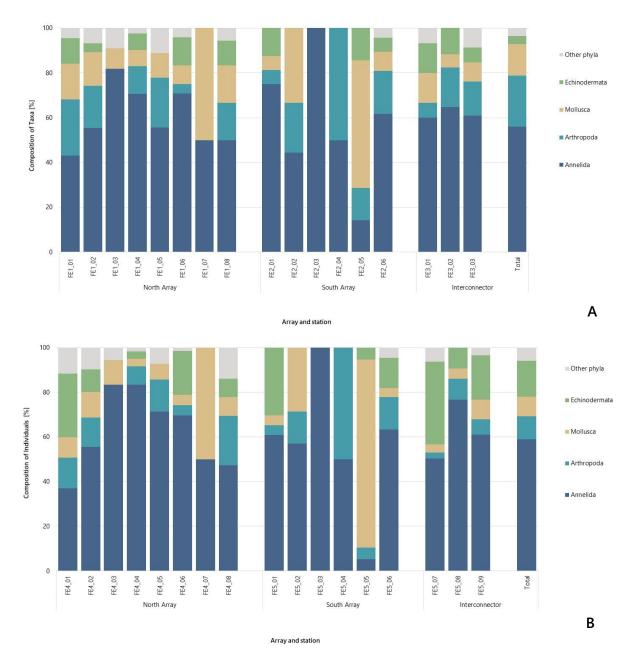


Figure 4.13: Phyletic composition of enumerated macrofaunal (A) taxa and (B) individuals, Five Estuaries Offshore Site Investigation

When assessed on a station basis, Annelida were recorded at all 17 stations sampled and were the only phylum recorded at station FE1_07, in the north array. At the remaining stations, Annelida comprised most of the taxa composition except station FE2_05, in the south array, where Mollusca comprised most of the taxa composition (Figure 4.13). Analysis of the species list indicated that station FE2_05 comprised seven taxa and 19 individuals, including four molluscs, one polychaete and one echinoderm. Station FE2_04 comprised two individuals, represented by the polychaete *Nephtys cirrosa* and the isopod *Eurydice spinigera*, resulting in this station having equal percentages of Annelida and Arthropoda.

Arthropoda were recorded at 14 stations and Molluscs at 15 stations, both having highest mean percentage contributions to taxa composition at stations in the south array

(Figure 4.13). However, analysis of the species list indicated that this was associated with generally low numbers of taxa from all phyla at these stations.

Annelida comprised also most of the enumerated macrofaunal abundance (59.0 %), followed by Echinodermata (16.1 %), Arthropoda (10.3 %) and Mollusca (8.8 %), whereas other phyla comprised 5.9 % of the enumerated faunal abundance (Table 4.12).

When assessed on a station basis, a pattern similar to that for the taxa composition was recorded (Figure 4.13).

4.4.1.2 Community Statistics

Table 4.13 presents the results of the univariate analysis of the enumerated macrofaunal dataset, which provided information on faunal richness and diversity and allow contextualising the results within the geographical context of the study area. Univariate indices included faunal richness (Margalef's index d), diversity (Shannon-Wiener Index $H'Log_2$), evenness (Pielou's index J') and dominance (Simpson's index λ).

The number of taxa ranged from 2 (station FE2_04) to 74 (station FE1_02), with a mean of 24 and a median of 17 across the VE main array survey area. c

The number of individuals ranged from 2 (station FE2_04) to 256 (station FE1_02) with a mean of 71 and a median of 36 across the VE survey area. Stations in the south array had the highest variation of faunal abundance, with a range of 2 to 172 individuals per station. High variation of faunal abundance was also recorded in the north array, with a range of 6 to 256 individuals per stations. Conversely, stations along the interconnector had the lowest variation with a range of 43 to 172 individuals per stations.

Values of richness reflected the number of individual per taxa recorded, with values ranging from 1.44 (station FE2_04) to 13.2 (station FE1_02) with a mean of 5.38 and a median of 4.74 across the VE main array survey area.

The Shannon-Wiener Diversity, assessed in line with the Dauvin et al., (2012) criteria (details in Section 3.3.3), was:

- high (H'Log₂ > 4.00) at 5 stations;
- good (H'Log₂ of 3.00 to 4.00) at 7 stations;
- moderate (H'Log₂ of 2.00 to 3.00) at 4 stations;
- poor (H'Log₂ of 1.00 to 2.00) at 1 station.

On average the diversity was good at stations in the north array (range of 2.58 to 5.51) and along the interconnector (range of 3.23 to 4.70) and moderate at stations in south array (range 1.00 to 4.82).

The evenness ranged from 0.734 (station FE1_04) to 1.000 (stations FE1_07, FE2_03 and FE2_04) with a mean of 0.885 and a median of 0.892 across the VE main array survey area. Stations FE1_07, FE2_03 and FE2_04 comprised one individual for each taxon recorded, which

resulted in the highest possible evenness value (J' = 1.000). High value of evenness ($J' \ge 0.900$) were recorded at four stations which were characterised by low number of individuals relative to the taxa recorded.

In general, values of dominance were inversely related to those of evenness, so that low values of evenness corresponded to high values of dominance and vice-versa as it would be expected.

Table 4.13: Community statistics of enumerated fauna (0.1 m²), Five Estuaries Offshore Site Investigation

	Numbers		Richness	Diversity	Evenness	Dominance
Station	Taxa	Individuals	Margalef [d]	Shannon- Wiener [H'Log₂]	Pielou [J']	Simpson [λ]
North Array						
FE1_01	44	130	8.83	4.54	0.832	0.081
FE1_02	74	256	13.2	5.51	0.887	0.033
FE1_03	11	18	3.46	3.09	0.892	0.160
FE1_04	41	120	8.36	3.93	0.734	0.181
FE1_05	9	14	3.03	3.04	0.959	0.133
FE1_06	24	66	5.49	4.21	0.918	0.066
FE1_07	6	6	2.79	2.58	1.000	0.167
FE1_08	18	36	4.74	3.93	0.943	0.076
South Array						
FE2_01	16	23	4.78	3.68	0.919	0.108
FE2_02	9	14	3.03	2.84	0.894	0.184
FE2_03	4	4	2.16	2.00	1.000	0.250
FE2_04	2	2	1.44	1.00	1.000	0.500
FE2_05	7	19	2.04	2.14	0.761	0.307
FE2_06	47	172	8.94	4.82	0.868	0.053
Interconnector						
FE3_01	30	113	6.13	3.92	0.799	0.124
FE3_02	17	43	4.25	3.23	0.789	0.201
FE3_03	46	172	8.74	4.70	0.851	0.061
Minimum	2	2	1.44	1.00	0.734	0.033
Maximum	74	256	13.2	5.51	1.000	0.500
Median	17	36	4.74	3.68	0.892	0.133
Mean	24	71	5.38	3.48	0.885	0.158
Standard Deviation	20	76	3.22	1.16	0.083	0.115

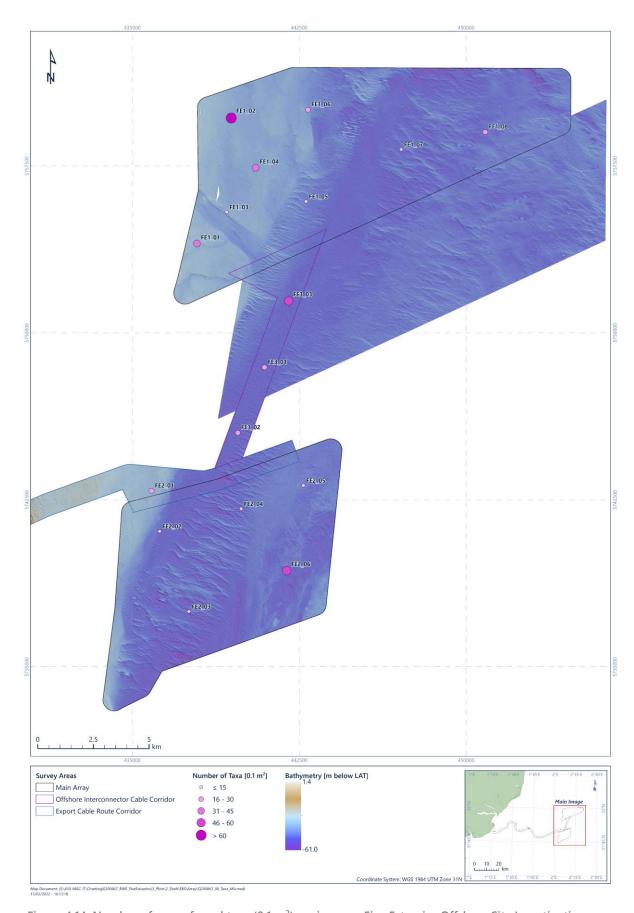


Figure 4.14: Number of macrofaunal taxa (0.1 m²), main array, Five Estuaries Offshore Site Investigation

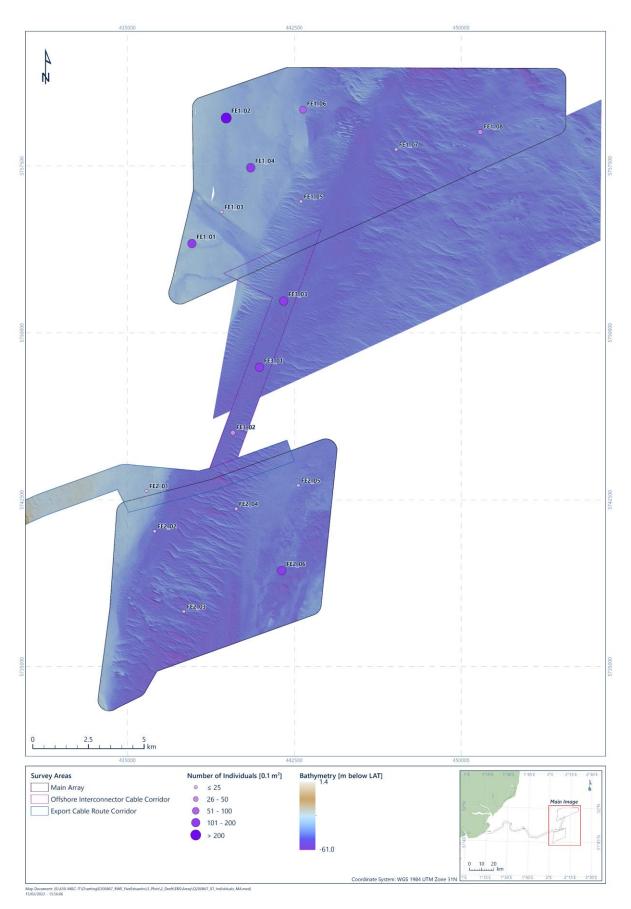


Figure 4.15: Number of macrofaunal individuals (0.1 m²), main array, Five Estuaries Offshore Site Investigation

4.4.1.3 Investigation of Faunal Similarities

The enumerated macrofaunal dataset was transformed prior to multivariate analysis. A fourth root transformation provided the best assessment, down weighting the numerically dominant species and allowing more detailed interrogation of less abundant taxa and the underlying community.

Faunal similarities were investigated using the hierarchical clustering analysis, results of which are in Figures 4.16 and 4.17. The SIMPROF test, undertaken in conjunction with the cluster analysis, was interpreted in ecological terms and, where appropriate, coarser groups were created (see Section 3.3.5).

Four groups of samples were identified at a similarity of 19 %. Of these, group C was split into further two groups at a similarity of 33 %.

The nMDS representation has a relatively high stress coefficient (details in Section 3.3.5), however, there is good correspondence between dendrogram and nMDS and as such the nMDS is deemed representative of the stations' two-dimensional ordination.

The groups identified through the multivariate analysis were further assessed by means of the SIMPER analysis. Table 4.14 presents the top ten characterising taxa identified through the SIMPER analysis along with a summary of the physical variables characterising each multivariate group; the average abundance of the characterising taxa refers to untransformed data.

Figure 4.18 presents the nMDS of hierarchical clustering analysis with superimposed multivariate groups and circles proportional in diameter to the abundance of taxa responsible for the separations of the multivariate groups.

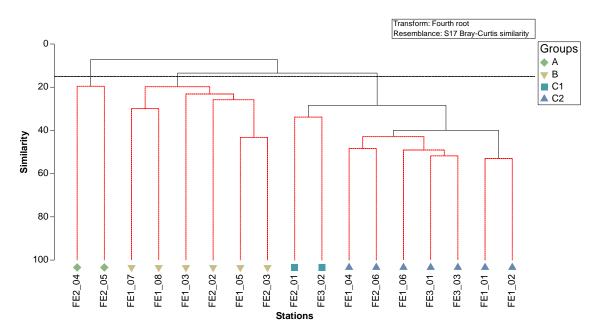


Figure 4.16: Dendrogram of hierarchical clustering analysis of enumerated fauna, main array, Five Estuaries Offshore Site Investigation

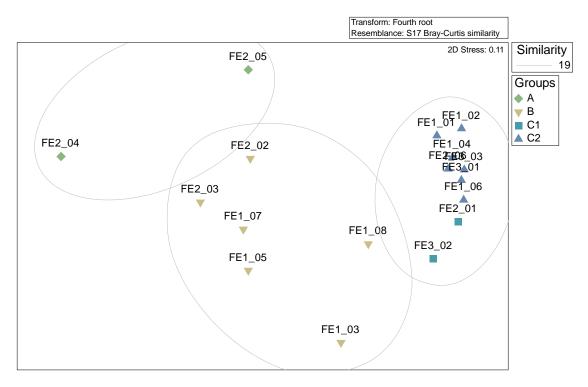


Figure 4.17: nMDS of hierarchical clustering analysis of enumerated fauna, main array, Five Estuaries Offshore Site Investigation

Group A comprised two stations from the south array and had an average similarity of 19.6 %. It was characterised by moderately well sorted 'sand' (Folk BGS modified), with mean median sediment particle size of 526 µm (coarse sand), in mean water depth of 48.0 m BSL. Group A had mean numbers of 5 taxa and 11 individuals, of which the polychaete Nephtys cirrosa was recorded at both stations. The other invertebrates included Eurydice spinigera at station FE2_04 and Gastrosaccus spinifer, Goodallia triangularis, Glycymeris glycymeris, Euspira nitida, Asbjornsenia pygmaea and Echinocyamus pusillus at station FE2_05.

Group B comprised six stations, including four from the north array and two from the south array and had an average similarity of 23.5 %. It was characterised by poorly sorted 'gravelly sand' (Folk BGS modified), with mean median sediment particle size of 640 µm (coarse sand), in mean water depth of 47.3 m BSL. Group B had mean numbers of 10 taxa and 15 individuals of which bivalves (*Spisula elliptica* and *G. triangularis*), polychaetes (*Aonides paucibranchiata*, *Glycera oxycephala*, *N. cirrosa*, *Notomastus*, *Glycera lapidum*, *Pholoe baltica* and *Pisione remota*) and Nemertea were amongst the characterising taxa.

Group C1 comprised two stations, one from the south array and one from the interconnector and had an average similarity of 33.8 %. It was characterised by very poorly sorted 'sandy gravel' (Folk BGS modified), with mean median sediment particle size of 12 125 μ m (medium pebble), in mean water depth of 43.5 m BSL. Group C1 had mean numbers of 17 taxa and 33 individuals, of which polychaetes (*A. paucibranchiata*, *Syllis garciai*, *Lumbrineris* cf. *cinqulata*),

bivalves (*G. glycymeris*) and echinoderms (*Ophiura albida* and *E. pusillus*) were the characterising taxa.

Group C2 comprised seven stations, including four from the north array, one from the south array and two from the interconnector and had an average similarity of 43.2 %. It was characterised by very poorly sorted mixed sediment, with mean median sediment particle size of 2752 µm (granule) in mean water depth of 44.3 m BSL. Group C2 had mean numbers of 44 taxa and 147 individuals, of which polychaetes (*L. cf. cingulata, P. baltica, G. lapidum, Scalibregma inflatum* and *Spirobranchus lamarcki*), crustacean amphipods (*Ampelisca spinipes*), echinoderms (*E. pusillus, Amphipholis squamata* and *O. albida*) and Nemertea were amongst the characterising taxa.

Taxa responsible for the separation of groups included (but were not limited to) *L.* cf. cinqulata, *S.* inflatum, *S.* lamarcki and *O.* albida (Figure 4.18).

The combination of physical variables (percentages of sediment fractions and depth) that best explained the observed pattern of macrofaunal distribution included percentages of medium gravel, fine gravel and fine silt, as identified through the BIOENV analysis, which returned the highest value of rho of 0.666 at a significance level of 1 % for this combination of variables.

Figure 4.19 illustrates the relationships between sediment type and macrofauna, highlighting an increase in enumerated faunal diversity (H'Log₂) with increased sediment coarseness and heterogeneity.

Table 4.14: Summary of attributes of multivariate groups of enumerated macrofauna, Five Estuaries Offshore Site Investigation

Group	Location and Station	Characterising Features	Characterising Taxa	Abundance [N]	Frequency [%]	Contribution to Similarity [%]
A • Average similarity: 19.6 %	South Array (FE2_04, FE2_05)	Taxa: 5 Individuals: 11 Depth [m BSL]: 48.0 Gravel [%]: 1.33 Sand [%]: 98.67 Fines [%]: 0.00 Median [µm]: 526 Sorting [µm]: 1.45	Nephtys cirrosa	1	100	100
	North Array (FE1_03, FE1_05, FE1_07, FE1_08) South Array (FE2_02, FE2_03)		Spisula elliptica	0.8	66.7	15.9
		Taxa: 10	Aonides paucibranchiata	0.7	66.7	15.1
		Individuals: 15	Glycera oxycephala	0.7	50.0	13.3
В		Depth [m BSL]: 47.3	Nephtys cirrosa	1.3	50.0	11.7
Average similarity:		Gravel [%]: 16.29	Notomastus	0.8	50.0	10.3
23.5 %		Sand [%]: 83.71	Goodallia triangularis	0.5	50.0	7.6
23.3 70		Fines [%]: 0.00	Glycera lapidum	0.8	50.0	6.2
		Median [µm]: 640	Nemertea	1.2	50.0	6.2
		Sorting [µm]: 2.53	Pholoe baltica	0.3	33.3	4.2
			Pisione remota	0.7	33.3	3.1
	South Array	Taxa: 17	Aonides paucibranchiata	2.5	100	19.2
		Individuals: 33	Syllis garciai	1.0	100	16.2
			Lumbrineris cf. cingulata	1.5	100	16.2
C1 -		Depth [m BSL]: 43.5	Glycymeris glycymeris	1.5	100	16.2
Average similarity:	(FE2_01)	Gravel [%]: 69.03	Ophiura albida	3.5	100	16.2
33.8 %	Interconnector (FE3_02)	Sand [%]: 27.97 Fines [%]: 3.00 Median [µm]: 12 125 Sorting [µm]: 6.36	Echinocyamus pusillus	2.0	100	16.2

Group	Location and Station	Characterising Features	Characterising Taxa	Abundance [N]	Frequency [%]	Contribution to Similarity [%]
			Lumbrineris cf. cingulata	9.7	100	7.2
		Taxa: 44 Individuals: 147 Depth [m BSL]: 44.3 Gravel [%]: 40.53	Ophiura albida	17	100	7.2
	North Array (FE1_01, FE1_02, FE1_04, FE1_06)		ndividuals: 147 Scalibregma inflatum	9.1	100	7.0
•			Echinocyamus pusillus	4.7	100	5.9
C2 A			Gravel [%]: 40.53	Pholoe baltica	3.0	100
Average similarity: 43.2 %	South Array (FE2_06)	Sand [%]: 49.61	Nemertea	2.4	100	4.9
45.2 %	Interconnector (FE3_01, FE3_03)	Fines [%]: 9.86	Spirobranchus lamarcki	13	85.7	4.8
		Median [µm]:	Amphipholis squamata	3.0	85.7	3.9
	, _ , , , , , , , , , , , , , , , , , ,	Sorting [µm]:	Glycera lapidum	3.0	85.7	3.8
			Ampelisca spinipes	3.6	85.7	3.5

Notes

Values refer to mean of untransformed data within each multivariate group
Frequency refers to number of stations within each multivariate group
Taxa listed are the top ten identified by the SIMPER analysis (100 % percentage contribution)
Taxa listed in decreasing order of percentage contribution to similarity
BSL = Below sea level

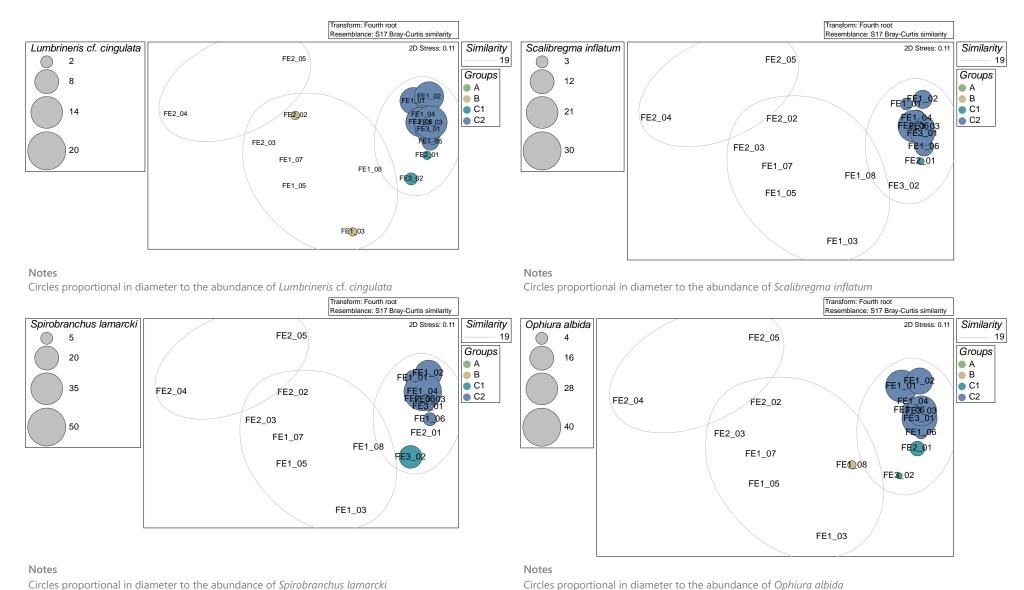
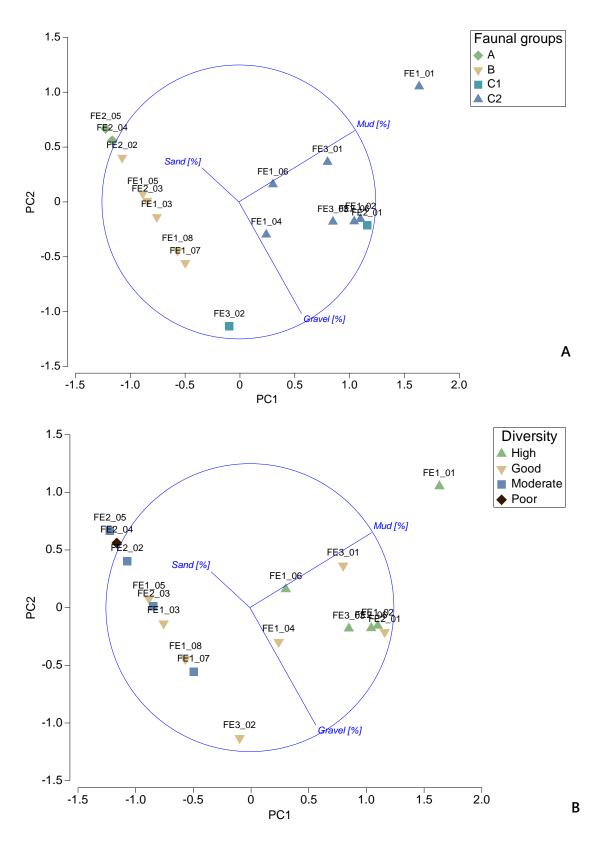



Figure 4.18: nMDS of hierarchical clustering analysis with superimposed multivariate groups and circles proportional in diameter to the abundance of taxa responsible for the separations of groups, Five Estuaries Offshore Site Investigation

Notes PC = Principal component

Figure 4.19: 2D PCA of sediment composition with superimposed survey blocks and macrofaunal (A) multivariate groups and (B) Shannon-Wiener [H'Log₂] index of diversity, main array, Five Estuaries Offshore Site Investigation

4.4.1.4 Biomass

Table 4.15 presents the percentage contribution of phyla to biomass across the VE array survey area. It is worth noting that the biomass of Arthropoda comprises only invertebrates of the subphylum Crustacea. The biomass of the Arthropoda subphylum Chelicerata is reported within the biomass of other phyla. Table 4.16 presents the biomass of major taxonomic groups at each station. Figure 4.20 presents the phyletic composition of the biomass at each station and Figure 4.21 presents the association of biomass with sediment type highlighting higher values of biomass in more diverse sediments. Figure 4.22 presents the spatial variations of the total macrofaunal biomass across the survey area. Appendix F presents the raw data.

Table 4.15: Taxonomic groups of macrofaunal biomass, main array, Five Estuaries Offshore Site Investigation

Phylum	Biomass [AFDW g/0.1 m²]	Biomass [%]
Annelida	3.5138	41.6
Arthropoda	1.5455	18.3
Mollusca	1.0210	12.1
Echinodermata	2.3475	27.8
Other phyla	0.0090	0.1
Total	8.4368	100

Notes

Annelida comprised Oligochaeta and Polychaeta

Other phyla included: Actiniaria, Chelicerata, Nemertea, Phoronida, Platyhelminthes

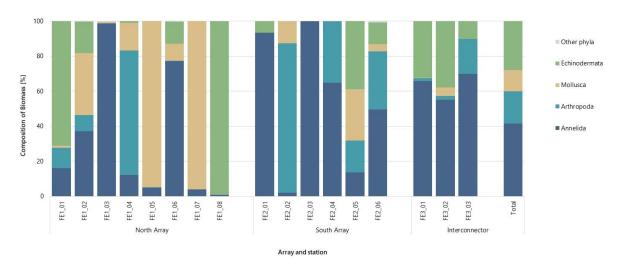
Arthropoda comprises only invertebrates of the subphylum Crustacea

Annelida comprised most of the macrofaunal biomass (41.6 %), followed by Echinodermata (27.8 %), Arthropoda (18.3 %) and Molluscs (12.1 %), whereas other phyla comprised 0.1 % of the macrofaunal biomass.

The total biomass ranged from 0.0031 AFDW g/0.1m² (station FE2_04) to 1.8608 AFDW g/0.1 m² (station FE1_02) with a mean of 0.4963 AFDW g/0.1 m² and a median of 0.2699 AFDW g/0.1 m².

The high value of biomass at station FE1_02 was associated with Annelida and Mollusca, which comprised 55.4 % and 14.9 %, respectively, of the faunal abundance (details in Section 4.4.1.1). Analysis of the species list indicated that the molluscs biomass at this station was associated with abundance of bivalves such as *K. bidentata* and the presence of large species, notably *Aequipecten opercularis*.

When assessed on a station basis, results indicated that the biomass of most phyla were associated with the abundance (see in Section 4.4.1.1), as well as the presence of large taxa, notably the echinoderms *Psammechinus miliaris* and *E. pusillus* at station FE1_01. At station FE1_08, the high percentage contribution of Echinodermata to the biomass was associated with *Amphipholis squamata* and *Ophiura albida* and the relatively low species richness and



abundance at this station, which comprised 18 taxa and 36 individuals (details in Section 4.4.1.1).

Table 4.16: Phyletic composition of macrofaunal biomass, Five Estuaries Offshore Site Investigation

Station	Biomass							
Station	Annelida	Arthropoda	Mollusca	Echinodermata	Other Phyla	Total		
North Array								
FE1_01	0.1012	0.0723	0.0087	0.4447	0.0007	0.6276		
FE1_02	0.6899	0.1754	0.6581	0.3339	0.0035	1.8608		
FE1_03	0.0183	0.0000	0.0001	0.0000	0.0001	0.0185		
FE1_04	0.1039	0.6036	0.1328	0.0095	0.0001	0.8497		
FE1_05	0.0054	0.0001	0.1020	0.0001	0.0000	0.1077		
FE1_06	0.1905	0.0005	0.0239	0.0312	0.0005	0.2466		
FE1_07	0.0013	0.0000	0.0299	0.0000	0.0000	0.0312		
FE1_08	0.0077	0.0022	0.0033	0.9946	0.0006	1.0084		
South Array								
FE2_01	0.4453	0.0004	0.0002	0.0313	0.0000	0.4772		
FE2_02	0.0058	0.2316	0.0345	0.0000	0.0000	0.2718		
FE2_03	0.0032	0.0000	0.0000	0.0000	0.0000	0.0032		
FE2_04	0.0020	0.0011	0.0000	0.0000	0.0000	0.0031		
FE2_05	0.0027	0.0036	0.0058	0.0077	0.0000	0.0199		
FE2_06	0.1336	0.0898	0.0111	0.0334	0.0021	0.2699		
Interconnector								
FE3_01	0.5515	0.0139	0.0028	0.2701	0.0008	0.8391		
FE3_02	0.0319	0.0012	0.0029	0.0219	0.0000	0.0578		
FE3_03	1.2197	0.3500	0.0049	0.1691	0.0005	1.7442		
Minimum	0.0013	0.0000	0.0000	0.0000	0.0000	0.0031		
Maximum	1.2197	0.6036	0.6581	0.9946	0.0035	1.8608		
Median	0.0319	0.0022	0.0058	0.0219	0.0001	0.2699		
Mean	0.2067	0.0909	0.0601	0.1381	0.0005	0.4963		
Standard deviation	0.3369	0.1666	0.1587	0.2598	0.0009	0.5919		

Notes Biomass expressed as ash free dry weight [AFDW] in g/0.1 m^2 grab sample

Figure 4.20: Phyletic composition of macrofaunal biomass, main array, Five Estuaries Offshore Site Investigation

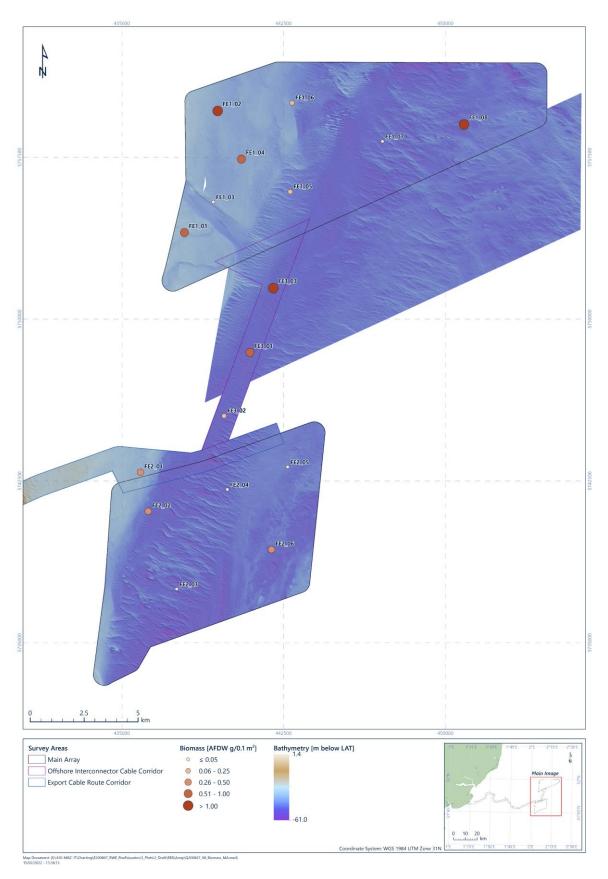



Figure 4.21: 2D PCA of sediment composition with superimposed arrays and circles proportional in diameter to the abundance of macrofaunal biomass expressed as ash free dry weight [AFDW] g/0.1 m², main array, Five Estuaries Offshore Site Investigation

Notes

Biomass expressed as ash free dry weight [AFDW] in $g/0.1\ m^2\ grab$ sample

Figure 4.22: Spatial variation of macrofaunal biomass, main array, Five Estuaries Offshore Site Investigation

4.4.2 Colonial Epifauna

Colonial epifauna was recorded at 15 of the 17 stations sampled. Stations FE2_01 and FE2_05 were devoid of colonial epifauna. These stations were characterised by moderately well sorted 'sand' (Folk BGS modified).

4.4.2.1 Phyletic Composition

Table 4.17 presents the community structure of sessile colonial epifauna and Table 4.18 presents the top ten most frequently occurring colonial epifaunal taxa across the VE main array survey area. Figure 4.23 presents the spatial variations of the number of epifaunal taxa. Figure 4.24 presents the colonial epifauna community structure at single stations and Figure 4.25 illustrates the relationships between sediment type and the occurrence of colonial epifauna.

Table 4.17: Taxonomic groups of colonial epifauna, main array, Five Estuaries Offshore Site Investigation

Taxonomic Group	Number of Taxa	Composition of Taxa [%]
Porifera	2	8.0
Cnidaria	5	20.0
Bryozoa	17	68.0
Other phyla	1	4.0
Total	25	100

Notes

Macrofaunal samples were processed through a 1 mm sieve Other phyla included Folliculinidae

Four main phyla of colonial epifauna were recorded at stations across the VE main array; of these, Bryozoa comprised most of the taxa composition (66.7 %), followed by Cnidaria (20.0 %), Porifera (8.0 %) and other phyla (4.0 %) (Table 4.17), the latter being represented by ciliates of the family Folliculinidae.

Folliculinidae were the most frequently occurring. The bryozoans *Aspidelectra melolontha*, *Escharella immersa*, *Disporella hispida* and species of the genus *Schizomavella* and the family Tubuliporidae were amongst the top ten most frequently occurring colonial epifauna, along with the hydroids *Hydrallmania falcata*, *Alcyonium digitatum* and species of the family Sertulariidae. Sponges of the genus *Cliona* (agg.) were also amongst the most frequently occurring colonial epifauna (Table 4.18).

On average, stations in the north array had higher numbers of colonial epifauna, with stations FE1_02 and FE1_01 having 15 and 10 colonial epifaunal taxa, respectively, compared to the remaining stations which had up to seven colonial epifaunal taxa (Figure 4.23). Stations in the north array also had the higher diversity of colonial epifauna (Figure 4.24) likely associated with the coarseness and diversity of the sediment (Figure 4.25).

Table 4.18: Top ten most frequently occurring colonial epifaunal taxa, main array, Five Estuaries Offshore Site Investigation

Taxon	Frequency [%]
Folliculinidae	66.7
Schizomavella	60.0
Aspidelectra melolontha	46.7
Sertulariidae	33.3
Escharella immersa	33.3
Cliona (agg.)	26.7
Hydrallmania falcata	26.7
Disporella hispida	26.7
Alcyonium digitatum	20.0
Tubuliporidae	13.3

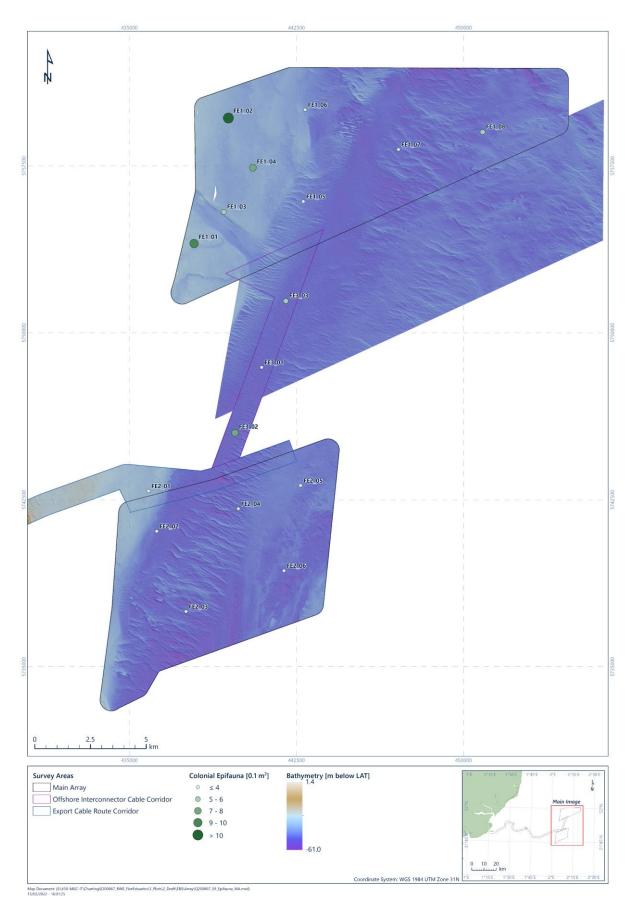


Figure 4.23: Spatial variations of the number of colonial epifauna (0.1 m²), main array, Five Estuaries Offshore Site Investigation

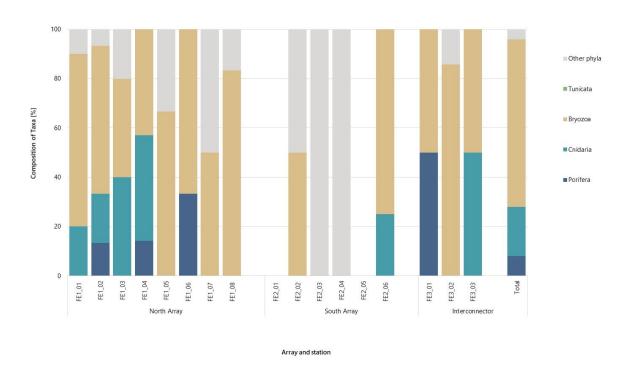


Figure 4.24: Phyletic composition of epifaunal taxa, main array, Five Estuaries Offshore Site Investigation

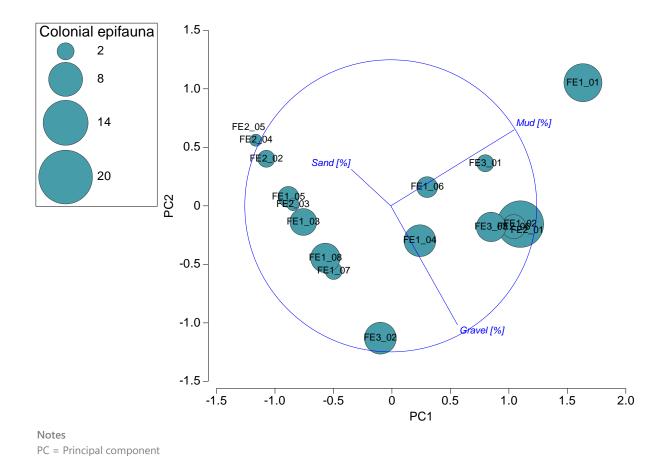


Figure 4.25: 2D PCA of sediment composition with superimposed circles proportional in diameter to the number of colonial epifauna, main array, Five Estuaries Offshore Site Investigation

4.5 Seabed Habitats and Biotopes

The physical and biological characteristics of the multivariate groups identified through the multivariate analysis of data across the VE main array survey area (Section 4.4.1.3) were evaluated in conjunction with the results of the video and photographic data analysis, detailed in the Environmental Features Report (Fugro 2022a), to provide a comprehensive habitat assessment. The seabed video provides an overview of the seabed over a wider area and can identify isolated features such as cobbles and/or boulders. By comparison, grab sampling provides detailed information of the sediment composition and associated fauna at a single point source and is important for the biotope classification of sedimentary habitats. The average similarity of the multivariate groups ranged from 19.6 % to 43.2 %, therefore, the stations within each multivariate group were assessed also individually when deriving biotopes, which resulted in a combination of biotopes characterising each multivariate group.

Results of the seabed video indicated the presence of the following biotopes and biotope complexes:

- 'Piddocks with sparse associated fauna in sublittoral very soft chalk or clay' (A4.231), described as soft chalk or clay in moderately exposed tide-swept conditions, bored by bivalves (EEA, 2019).
 - This biotope was assigned to areas of firm clay, amongst areas of mixed sediments, recorded at station FE1_01, in the north array. These firm clay sediments featured round burrows characteristic of piddocks and supported little or no epifauna. Mobile epifauna included the starfish *Asterias rubens*, hermit crabs of the family Paguridae and brittlestars of the class Ophiuroidea including *Ophiura albida*.
- 'Circalittoral coarse sediment' (A5.14), described as coarse sands, gravel and shingle in the circalittoral zone along exposed coasts and offshore. This habitat is characterised by robust infaunal polychaetes, mobile crustacea and bivalves (EEA, 2019). This biotope complex was assigned to station FE1_04 in the north array. At this station the geophysical data indicated the presence of mobile sediments owing to presence of ripples, mixed with rough sediments. This was corroborated by the seabed video and photographic data which indicated rippled sands with patches of sandy gravel and cobbles. Epibiota included A. rubens, Ophiuroidea including O. albida, the sea urchin P. miliaris and the queen scallop A. opercularis. Low-lying gravel and cobbles, which were subject to sediment disturbance, were colonised by polychaetes tubes of the family Serpulidae including species of Spirobranchus. The upper surface of more stable cobbles and pebbles were colonised by encrusting bryozoans, and the soft coral Alcyonium digitatum.
- 'Circalittoral mixed sediment' (A5.44), described as habitats in the circalittoral zone featuring mixed sediments including shells, cobbles and pebbles embedded in or lying upon mud, sand or gravel; the variable nature of the seabed results in a variety of biological communities (EEA, 2019).

This biotope complex was assigned to areas of mixed sediments, inclusive of pebbles and cobbles, at stations FE1_01 and FE1_02 in the north array. At station FE1_01 this biotope complex occurred in conjunction with 'Piddocks with sparse associated fauna in sublittoral very soft chalk or clay' (A4.231). Epibiota included Ophiuroidea, *A. rubens*, *P. miliaris*, *A. opercularis*, *A. digitatum*, anemones of the genus *Urticina*, faunal turf of Hydrozoa/Bryozoa, and Serpulidae, including *Spirobranchus* sp.

Owing to the presence of cobbles and occasional boulders, three stations in the north array were assessed in relation to the Annex I habitat 'Reef' (geogenic).

The results of the assessments, detailed in the Environmental Feature Report (Fugro, 2022a), are summarised in Table 4.19. Figure 4.26 presents photos representative of areas assessed for potential biogenic and geogenic reef.

All cobbles aggregations were classified as 'Not a reef' owing to a percentage of cobbles < 10 % and an elevation < 64 mm.

Table 4.19: Summary of 'Stony reef' assessment, Five Estuaries Offshore Site Investigation

Station	Length* [m]	% Cover Cobbles and Boulders	Elevation	Epifaunal Coverage	Resemblance to a Stony Reef		
FE1_01	69	< 10	< 64 mm	< 80 %	Not a Reef		
FE1_02	61	< 10	< 64 mm	< 80 %	Not a Reef		
FE1_04	67	< 10	< 64 mm	< 80 %	Not a Reef		
Notes * Refers to section of transect assessed							

Figure 4.26: Representative photos of habitats assessed for potential Annex I 'Reef' (geogenic), Five Estuaries Offshore Site Investigation

4.5.1 Biotope Classification

Table 4.20 presents the EUNIS hierarchical structure of the habitats and biotopes identified across the VE main array survey area, by integration of the grab samples with the video and photographic data. Reference was also made to the European Marine Observation Data

Network (EMODnet) seabed habitat distribution map (EMODnet, 2022) to verify alignment and/or highlight difference with the available data.

Table 4.21 presents the biotopes identified for each of the multivariate groups (detailed in Section 4.4.1.3).

Table 4.20: Habitat classifications, Five Estuaries Offshore Site Investigation

EUNIS Habitat C						
Environment Level 1	Habitat Complex Level 2	Habitat Level 3	Biotope Complex Level 4	Biotope Level 5	Equivalent JNCC (2015) Classification	
	A5 Sublittoral sediment	A5.1 Sublittoral coarse sediment	A5.15 Deep circalittoral coarse sediment	-	SS.SCS.OCS	
A Marine		A5.2 Sublittoral sand	A5.27 Deep circalittoral sand	-	SS.SSa.OSa	
Wallie		A5.4 Sublittoral mixed sediment	A5.45 Deep circalittoral mixed sediments	A5.451 Polychaete-rich deep <i>Venus</i> community in offshore mixed sediments (A5.451)	SS.SMX.OMx.PoVen	

Notes

EEA = European Environment Agency

EUNIS = European Nature Information System

JNCC = Joint Nature Conservation Committee

Table 4.21: Summary of EUNIS habitat classifications, main array, Five Estuaries Offshore Site Investigation

EUNIS Habitat Classification (EEA, 2019)	Multivariate Faunal Sediment de Group Depth range	Sediment description &	Epibiota (from video and	Characterising Taxa (from grab samples)		Representative photograph from video and photography	
(=== 1, ======		Deptil range	photographs)	Infaunal	Epifaunal		
Deep circalittoral sand (A5.27)	A South Array (FE2_04, FE2_05)	Moderately well sorted (coarse) sand 45 m to 50 m BSL	-	Nephtys cirrosa	-	-	
Deep circalittoral coarse sediment (A5.15) Deep circalittoral sand (A5.27)	B North Array (FE1_03, FE1_05, FE1_07, FE1_08) South Array (FE2_02, FE2_03)	Poorly sorted gravelly (coarse) sand 48 m to 52 m BSL	-	Spisula elliptica Aonides paucibranchiata Glycera oxycephala Nephtys cirrosa Notomastus Goodallia triangularis Glycera lapidum Nemertea Pholoe baltica Pisione remota	Folliculinidae Aspidelectra melolontha Escharina johnstoni	-	
Polychaete-rich deep <i>Venus</i> community in offshore mixed sediments (A5.451)	C1 South Array (FE2_01) Interconnector (FE3_02)	Very poorly sorted coarse (medium pebble) sediment 37 m to 50 m BSL	-	Aonides paucibranchiata Syllis garciai Lumbrineris cf. cingulata Glycymeris glycymeris Ophiura albida Echinocyamus pusillus	Folliculinidae Disporella hispida Conopeum reticulum Escharella immersa Schizomavella	-	
Deep circalittoral coarse sediment (A5.15) and Polychaete-rich deep <i>Venus</i> community in offshore mixed sediments (A5.451)	C2 North Array (FE1_01, FE1_02, FE1_04, FE1_06) South Array (FE2_06) Interconnector (FE3_01, FE3_03)	Very poorly sorted coarse (granule) sediment 35 m to 52 m BSL	Aequipecten opercularis Alcyonium digitatum Asterias rubens Psammechinus miliaris Spirobranchus Ophiura albida Calliostoma zizyphinum Paguridae Sagartiidae Urticina	Lumbrineris cf. cingulata Ophiura albida Scalibregma inflatum Echinocyamus pusillus Pholoe baltica Nemertea Spirobranchus lamarcki Amphipholis squamata Glycera lapidum Ampelisca spinipes	Schizomavella Sertulariidae Cliona (agg.) Escharella immersa Hydrallmania falcata Alcyonium digitatum Disporella hispida Folliculinidae Tubuliporidae Aspidelectra melolontha	FE1_04	

Notes

Multivariate groups identified by hierarchical clustering analysis of enumerated fauna

Sediment classification based on Folk (British Geological Survey [BGS] modified), Description based on Wentworth (1922) scale

Characterising taxa from grab samples are the top ten identified through the similarity percentage analysis [SIMPER]

Epifauna from the grab samples lists the top ten most frequently occurring taxa

BSL = Below sea level

EUNIS = European Nature Information System

4.5.1.1 'Deep circalittoral sands' (A5.27)

The biotope complex 'Deep circalittoral sands' (A5.27) is described as sands or non-cohesive muddy sands (EEA, 2019).

This habitat was assigned to all stations in multivariate group A, and station FE2_02 in multivariate group B. These stations featured moderately well sorted (coarse) sand in water depth of 45 m to 50 m BSL. Stations in this group had no mud content and a gravel content of up to 3.06 %. Faunal richness and abundance were low and represented by the polychaete *N. cirrosa* which was recorded at all stations. Other taxa included the crustaceans *E. spinigera* and *G spinifer*, the molluscs *G. triangularis*, *G. glycymeris*, *A. pygmaea*, *Abra prismatica* and *E. nitida* and the urchin *E. pusillus*. A single individual of the crab *Thia scutellata* was recorded at station FE2_02.

Colonial epifauna was represented by Ciliophora of the family Folliculinidae.

4.5.1.2 'Deep circalittoral coarse sediment' (A5.15)

The biotope complex 'Deep circalittoral coarse sediment' (A5.15) is described as coarse sand and gravel circalittoral habitats covering large areas of the offshore continental shelf characterised robust infaunal polychaete and bivalve species.

This biotope complex was assigned to all stations in multivariate groups B and station FE3_02 in multivariate group C1, as well as stations FE1_04, FE1_06 and FE3_03 in multivariate group C2. These stations generally featured poorly sorted gravelly sand or sandy gravel, with sediment coarseness ranging from coarse sand to coarse pebble. These stations had higher mean values of faunal richness and abundance than the predominantly sandy stations, with typical taxa including polychaetes such as *L. koreni, L. cf. cingula, A. paucibranchiata, S. inflatum, Syllis garciai* and species of *Pholoe, Glycera* and *Notomastus*; crustacean amphipods such as *Ampelisca spinipes* and species of *Urothoe*; echinoderms such as *O. albida* and *E. pusillus.* Low abundance (< 20 individuals) of the polychaete *S. spinulosa* were recorded at stations FE1_04 and FE3_03.

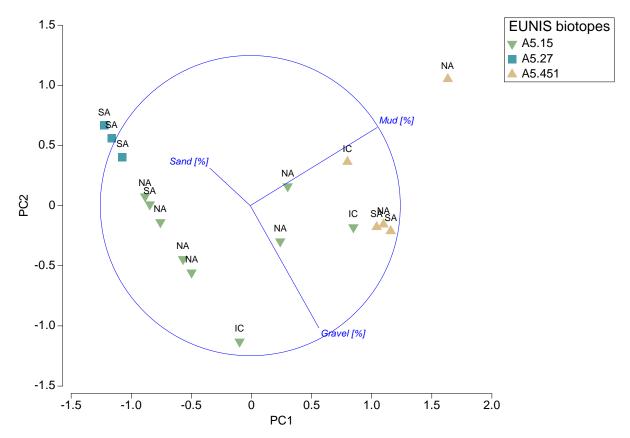
Colonial epifauna stations included Folliculinidae, bryozoans such as *A. melolontha*, *E. immersa* and *Escharina johnstoni* and species of *Schizomavella*, and hydroids such as *H. falcata* and species of Sertulariidae.

4.5.1.3 'Polychaete-rich deep *Venus* community in offshore mixed sediments' (A5.451)

The biotope 'Polychaete-rich deep *Venus* community in offshore mixed sediments' (A5.451), is described as a community rich in polychaetes and venerid bivalves. Typical polychaetes include, but are not limited to, *G. lapidum*, *A. paucibranchiata*, *M. fragilis*, *Lumbrineris* and syllid species and bivalves such as *Timoclea ovata* and *Spisula elliptica* (EEA, 2019).

This biotope was assigned to stations FE1_01, FE1_02, FE2_06, in multivariate group C2, station FE2_01 in multivariate group C1 and station FE3_01 in multivariate group C2. These

stations featured very poorly to extremely poorly sorted mixed sediments, with typical taxa including polychaetes such as *P. baltica*, *G. lapidum*, *L. cf. cingulata*, *Notomastus*, *S. inflatum* and *S. lamarcki*; bivalves such as *Diplodonta* (formerly *Tellina*) *rotundata*, *K. bidentata*, *S. elliptica* and *Abra alba*. The chiton *Leptochiton asellus* was also recorded along with echinoderms such as *O. albida*, *A. squamata*, *E. pusillus* and *P. miliaris* and crustaceans such *A. spinipes*, species of the genera *Ericthonius* and *Jassa* and *P. longicornis*.


Colonial epifauna from the grab samples comprised bryozoans (e.g. *E. immersa*, *D. hispida*, and species of *Schizomavella* and Tubuliporidae) and hydroids (e.g. *A. digitatum* and species of Sertulariidae), many of which were also recorded through the seabed video and photography, as were *Calliostoma zizyphinum*, *A. rubens A. opercularis* species of Paguridae, Sagartiidae and *Urticina*.

4.6 Biotope Classification and Sediment Data

Figure 4.27 illustrates the association between the biotopes recorded and the sediment type and Figure 4.28 illustrates the spatial distribution of biotopes across the VE main array, following extrapolation of single points grab samples based on SSS data.

The predominant biotope complex across the VE main array survey area was 'Deep circalittoral coarse sediment' (A5.15), whereas 'Deep circalittoral sublittoral sand' (A5.27) typified the predominantly sandy habitats in the northern section of the south array. As the proportion of mud increased, the sediment became mixed and the biotope 'Polychaete-rich deep *Venus* community in offshore mixed sediments' (A5.451) was assigned to the mixed sediment stations with overall higher faunal richness and diversity.

Notes:

EUNIS = European Nature Information System

IC = Interconnector

NA = North Array

SA = South Array

PC = Principal component

A5.15 = 'Deep circalittoral coarse sediment'

A5.27 = 'Deep circalittoral sublittoral sand'

A5.451 = 'Polychaete-rich deep *Venus* community in offshore mixed sediments'

Figure 4.27: 2D PCA of sediment composition with superimposed locations and EUNIS biotopes, main array, Five Estuaries Offshore Site Investigation

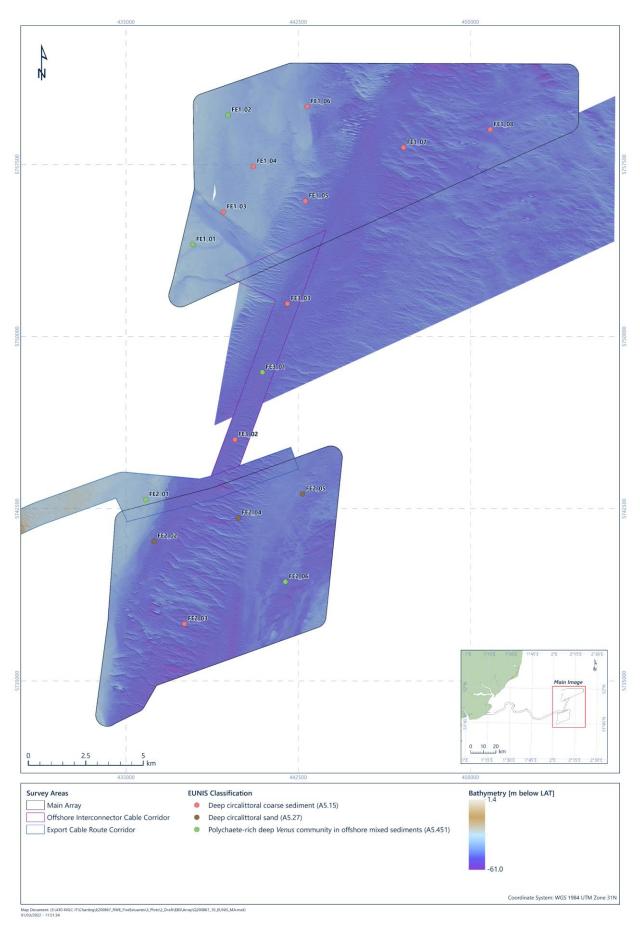


Figure 4.28: Spatial distribution of EUNIS habitats and biotopes, main array, Five Estuaries Offshore Site Investigation

5. Discussion

Physico-chemical and biological analysis of sediment samples provided information for sediment characterisation, potential contamination and biological communities across the VE main array survey area. Data gathered are important components of environmental studies to support engineering design and/or EIA.

5.1 Sediment Characterisation

Results of the seabed video footage described the seabed within the VE main array survey area as sandy muddy gravel with varying proportions of cobbles and shell fragments. Areas of clay with piddock holes were also recorded, as well as areas of rippled sand, the latter being indicative of sediment disturbance associated with hydrodynamics. Large areas of rippled sand and un-cohesive cover comprising superficial sand and/or mud with various proportions of gravel are ubiquitous throughout much of the North Sea (DTI, 2002).

Results of the sediment PSD analysis indicated the presence of coarse sediment comprising mainly sand, the mean content of which was 64.87 %, and, to a lesser extent, gravel, the mean content of which was 30.71 %. A mud content of 47.10 % was recorded at station FE1_01, in the north array, which was high, considering that the mean content of mud across the VE main array survey area was 4.41 % and many stations were devoid of mud. The coarseness of the sediment ranged from 'very fine sand' to 'pebble', with a median in the 'very coarse' sand region, based on the Wentworth (1922) scale. In general, the coarsest sediment was recorded along the interconnector, as indicated by the median sediment particle size.

Five sediment classes were identified using the Folk (BGS modified) sediment classification, of which 'gravelly sand' typified six stations and 'sandy gravel' typified four stations. 'Sand' and 'muddy sandy gravel' typified three stations each, whereas 'gravelly mud' typified one station. The sorting coefficient reflected the heterogeneity of the sediment and ranged from moderately well sorted to extremely poorly sorted, with most stations having very poorly sorted sediments.

The sediments across the VE main array survey area are typical of the southern North Sea, which is reported to comprise predominantly sandy gravel closer to the shore, whereas offshore the sediment is mainly sandy with patches of gravel and mud (Jones et al, 2004). A thin veneer of sediment is reported to often overlay clay bedrock particularly in the Outer Thames Estuary (Marine Aggregate Levy Sustainability Fund [MALSF], 2009). In this study, areas of firm clay were recorded through the seabed video and photography at station FE1_01 in the north array. Variations in the proportions of mud in the Outer Thames Estuary are reported to be associated with the input from the local fluvial sources and differences in depositional and erosion regimes, whereas well sorted mobile sand is associated with the tidally aligned sandbanks, notably the Inner Gabbard, Greater Gabbard, Galloper and North Falls (MALSF, 2009). Pebble, cobble and boulder size classes of seabed gravel are localised

and likely originate from older gravelly formations that have been submerged during rising sea level (DTI, 2002).

Continuous inputs of fines from the estuaries and sediment disturbance associated with hydrodynamics, results in patchy distribution of sediment assemblages (Irving, 1998). Patches of gravel and, to a less extent, mud were recorded within the predominantly sandy sediments across the VE main array survey area. Shell fragments, recorded through in situ observation of the grab samples, are a feature of seabed sediment of this region (MALSF, 2009). This is of relevance as the PSD analysis does not discern between gravel and shells. The different sources of sediment input may result in multimodal distribution of the sediment particle size (Hein, 2007), in line with the results of this study which recorded bimodal and/or polymodal distribution at 12 of the 17 stations sampled.

5.2 Sediment Chemistry

5.2.1 Sediment Hydrocarbons

5.2.1.1 Total Hydrocarbons

Across the VE survey area THC was below the LOD and below the Cefas AL1 (100 mg/kg) (Cefas, 2020). It is worth noting that the Cefas AL1 for THC is currently used as guideline in the absence of full data for PAHs to assess whether dredged material can be disposed of to sea by the regulators and their scientific advisors (Mason et al., 2020). The use of THC is limited in that it provides no indication of toxicity and may be conservative as indicated by most sediment failing this threshold, in addition there is large inter-laboratory method variability (Mason et al., 2020). Results from this study are indicative of low anthropogenic input, as in general, marine sediments are considered unpolluted if the THC is below 10 μ g/g (Farrington & Tripp, 1977; Volkman et al., 1992; Readman et al., 2002).

5.2.1.2 Aromatic Hydrocarbons

Monitoring of aromatic hydrocarbon type and content is important due to the particularly toxic nature (mutagenic/carcinogenic) of several PAHs, particularly the heavier weight PAHs. The Unites States Environmental Protection Agency (US EPA) has identified 16 priority PAHs to be monitored (Keith, 2015) and the CEMP specifies 9 PAHs of specific concern (OSPAR, 2014), which primarily reflect inputs from man-made combustion sources.

The PAH concentrations across the VE main array survey area were below the LOD and the marine SQGs.

5.2.2 Sediment Metals

Metal concentrations in sediment samples across the VE main array survey area were below the marine SQGs for all metals except arsenic, the concentration of which was above the Canadian TEL at all stations. It is worth noting that the value of the Canadian TEL for arsenic (7.24 mg/kg) is lower than that of the NOAA ERL (8.2 mg/kg), which has been considered too low (de Mora et al., 2004) particularly as uncontaminated coastal sediments are generally

reported to have arsenic concentrations between 5 mg/kg and 15 mg/kg (Neff, 1997). Importantly, the NOAA ERLs for arsenic has not been adopted for the assessment of contamination status in the OSPAR maritime area, as they are below the BAC (OSPAR, 2009).

Natural sources of arsenic in the marine environment include mineral erosion, volcanic eruptions and forest fires (Neff, 1997; Cempel & Nikel, 2006), whereas anthropogenic sources include mining and smelting, burning of fossil fuel and surface runoff (Neff, 1997; Nriagu, 1990). High arsenic concentrations in the Outer Thames Estuary may be associated with a history of arsenical waste disposal in the Thames estuary (Whalley et al., 1999). The arsenic concentrations recorded in this study (8.7 mg/kg to 18.8 mg/kg) were within the range of < 0.15 mg/kg to 135 mg/kg reported for the southern North Sea (Whalley et al., 1999).

5.2.3 Sediment Polychlorinated Biphenyls

Polychlorinated biphenyls (PCBs) are industrial chemicals used in electrical equipment. Although the use of PCBs has been banned for many years, they can persist in marine sediments owing to their resistance to degradation (Geyer et al., 1984).

The PCBs analysed in this study had concentrations below their respective LODs and the total concentration of all PCBs was below the Cefas marine SOGs.

5.2.4 Sediment Organotins

Organotin compounds have historically been used in marine antifouling products however, their use is now prohibited, following evidence of their toxicity to selected marine organisms. However, TBT, one of the most toxic contaminants, may still enter the marine environment through sources such as wastewater, as TBT is used as biocide in preserving wood, textile, papers and stonework (Díez et al., 2005). Amongst the toxic effects of TBT is imposex, that is the imposition of male characteristics on the female gastropod *Nucella lapillus*, following exposure to concentration levels as low as 1 ng/L, with severe cases resulting in sterilisation of the organisms (Bryan et al., 1987).

The TBT degradation results in the production of DBT and monobutyl tin. These are used as stabilisers in polyvinyl chloride (PVC) production (Díez et al., 2005) and, although found to be less toxic than their parent compound, cause toxicity to some aquatic organisms (Huang et al., 2004).

The organotin compounds analysed in this study, specifically DBT and TBT, had concentrations below their respective LODs and below Cefas ALs across the VE main array survey area.

5.2.5 Sediment Organochlorine Pesticides

Organochlorine pesticides (OCPs) are synthesized pesticides used in agriculture as insecticides and have a long-term residual effect in the environment.

The OCPs analysed in this study included alpha-hexachlorocyclohexane (AHCH), beta-hexachlorocyclohexane (BHCH), gamma-hexachlorocyclohexane (GHCH), dieldrin, hexachlorobenzene (HCB), p,p'-dichlorodiphenyldichloroethane (PPTDE), p,p'-dichlorodiphenyldichloroethylene (PPDDE) and p,p'-dichlorodiphenyltrichloroethane (PPDDT). All OCPs had concentrations below their respective LODs and the Cefas marine SQGs, which currently include AL1 for dieldrin and DDT.

5.3 Macrofaunal Communities

Macrofaunal communities recorded across the VE main array survey area were represented mainly by Annelida which dominated in terms of richness and abundance. Of the annelids, the polychaetes *L. cf. cingulata*, *P. baltica*, *G. lapidum*, *A. paucibranchiata* and *Notomastus* were the top five most frequently occurring taxa recorded across the survey area. Of these, *L. cf. cingulata*, *A. paucibranchiata* and *Notomastus* were also amongst the top five most abundant annelids, along with *S. lamarcki* and *S. inflatum*.

The polychaete *S. spinulosa* was recorded at four stations with the highest abundance of 19 individuals recorded at station FE3_03 along the interconnector. This is of relevance in relation to the habitat reef that this polychaete can build under a given set of environmental conditions (Limpenny et al. 2010). In the North Sea, *S. spinulosa* occurs mostly as solitary or in small groups encrusting pebbles, shells and bedrock (Biodiversity Reporting and Information Group [BRIG], 2011).

Mollusca included bivalves, notably *S. elliptica*, *K. bidentata*, *A. alba*, *D. rotundata* and *G. triangularis*, which were the top five most frequently recorded molluscs. These were also the most abundant molluscs along with *L. asellus*. Some of these molluscs are generally opportunistic species, for example, bivalves of the genus *Abra* are reported to be capable of exploiting newly disturbed substratum through larval recruitment, secondary settlement of post metamorphosis juveniles and/or redistribution of adults (De-Bastos, 2016). Similarly, *K. bidentata* is reported to occur in association with burrows of brittlestars of the order Ophiuroidea (Gofas & Salas, 2008), which were also recorded in this study, particularly *O. albida* and *A. squamata*, which were the most frequently and abundant echinoderms, along with *E. pusillus*. The latter is reported to inhabit the interstices of gravelly substrata in area exposed to strong tidal currents (Rees et al., 2007).

Overall, the macrobenthic communities recorded in this study are indicative of coarse sediment habitats subject to a degree of surface sediment disturbance, as indicated by the polychaete composition, notably *A. paucinrabchiata* (Künitzer et al., 1992; Heip and Craeymeersch, 1995) and the occurrence of crustaceans such as *A. spinipes* (Tillin, 2019). The latter was amongst the top five most abundant and frequently occurring arthropods, along with the amphipods *Urothoe marina* and *Urothoe elegans*. The presence of pebbles and cobbles, also recorded through the seabed video and photography, offered suitable substrate for the attachment of solitary epifauna such as the barnacle *Verruca stroemia* and

calcareous tube building polychaetes of the genus *Spirobranchus*, as well as colonial epifaunal taxa, notably bryozoan and hydroids.

There was considerable variability in the number of taxa and individuals across the survey area, which resulted in four macrofaunal assemblages being identified through the multivariate analysis. Each multivariate group had an average similarity < 45 %, reflecting the varying coarseness of the seabed sediment in a high energy environment. This was further confirmed by the moderate correlation between the observed pattern of macrofaunal distribution and the sediment particle sizes, which was interpreted as a reflection of the constant sediment reworking.

The infaunal biomass was represented mainly by Annelida owing to the numerical dominance of this phylum's invertebrates and Echinodermata, the latter associated with the abundance of brittlestars and the size of urchins, typically *E. cordatum*, which can grow up to 9 cm (Hill, 2008), *P. miliaris* which can reach 5.7 cm (Jackson, 2008).

Colonial epifauna from the grab samples was represented by bryozoans, hydroids, sponges and ciliates, the occurrence of which was generally higher at stations featuring coarser and/or mixed sediment, owing to the sediment coarseness and diversity which provide microhabitats and hard substrate for the settlement of epibenthic taxa. This in turn increases the structural complexity of the habitat and may provide additional microhabitats for smaller fauna, thus increasing the overall richness and diversity (BRIG, 2011), as recorded in this study.

Epibenthic taxa recorded through the seabed video and photography included molluscs, notably the gastropod *Calliostoma zizyphinum* and the bivalves *A. opercularis* and *Pecten maximus*. Other notable motile species included the echinoderms *A. rubens* and *P. miliaris* and brittlestars of the class Ophiuroidea. Epifauna was represented by anemones of the order Actiniaria, including species of the family Sagartiidae and the genus *Urticina*, the soft coral *A. digitatum*, polychaete tubes including *Spirobranchus*, barnacles and turfs of hydrozoans and bryozoans. Fish included *Scyliorhinus canicula*, and species of the family Triglidae. Overall, epibiotic communities recorded by the seabed video footage were comparable to those reported for the shallower sediment areas of the southern North Sea (Callaway et al., 2002; Jennings et al., 1999).

5.4 Habitats and Biotopes

Two biotope complexes and one biotope were identified across the VE main array survey area.

The biotope complex 'Deep circalittoral coarse sediment' (A5.15) typified most of the survey area, being assigned at 10 stations. These stations featured coarse sediment comprising varying proportions of (coarse) sand and gravel and little (\leq 3.16 %) or no mud, with most stations being devoid of mud. The macrofaunal richness and diversity at these stations were generally higher than those of the predominantly sandy stations, but lower than those of the mixed sediment, albeit many of the taxa were common to both habitats. Indeed, the

invertebrates communities of this biotope complex are reported to be related to those of offshore mixed sediments (EEA, 2019).

The biotope complex 'Deep circalittoral sand' (A5.27) was assigned to three stations, which featured predominantly sandy sediments, with no fines and a gravel content \leq 3.06 %. These stations had generally low species richness and diversity with typical taxa including robust and flexible polychaetes and bivalves.

The biotope 'Polychaete-rich deep *Venus* community in offshore mixed sediments' (A5.451), typified four stations. These stations had mud content between 4.95 % and 47.10 % and gravel content between 15.80 % and 59.61 % and generally higher mean values of richness and abundance. This biotope is the only representative of the biotope complex 'Offshore circalittoral mixed sediments' (A5.45) (JNCC, 2015), and can be subject to natural temporal variation in species abundance even during the course of a year These variations may not alter the biotope classification especially if the sediment type remain unchanged and many of the characteristic species are present (Tillin, 2016).

The biotopes identified through the video data and single point grab sampling were contextualised with the results of the SSS to attempt extrapolation of the biotopes across the survey area.

Biotope complexes were deemed more representatives for extrapolation as they encompass biotopes that may grade into each other depending on the hydrodynamics and the sediment deposition, which are seasonal, particularly in high energy areas. Figure 5.1 presents the spatial distribution of the biotope complexes across the VE main array survey area.

Figure 5.1: Spatial distribution of EUNIS biotope complexes identified through single point grab sampling and side scan sonar data, main array, Five Estuaries Offshore Site Investigation

5.4.1 Potentially Sensitive Habitats and Species

Aggregation of cobbles, along transects at station FE1_01, FE1_02 and FE1_03 in the north array, were assessed for the potential of these aggregations to constitute Annex I habitat 'Reef', in line with the criteria detailed in Irving (2009) and Golding et al., (2020) for geogenic reefs. The overall assessment for these areas was of 'Not a reef'. Areas of heterogeneous coarse sediment inclusive of pebbles and cobbles are a component part of the mixed sediment seabed type that characterises this region of the North Sea.

The biotope 'Piddocks with sparse associated fauna in sublittoral very soft chalk or clay' (A4.231), was assigned to areas of firm clay, based on analysis of seabed and photographic data (detailed in Fugro 2022a). This biotope, reported to occur along the east coast of England, is a UK BAP priority habitat for being fragile and irreplaceable (BRIG, 2011) and may occur in the habitat 'Peat and clay exposure' which is a habitat of conservation importance (HOCI) in MCZs (JNCC, 2018).

Sandy and coarse sediment habitats and biotopes recorded across the VE main array survey area, are part of the BSH 'Subtidal sands and gravel', which is a UK BAP priority habitat (BRIG, 2011) and a habitat of conservation importance (HOCI) in MCZs (JNCC, 2016). Biotopes featuring mixed sediments are part of the BSH 'Subtidal mixed sediments' in MCZs (JNCC, 2018).

A single specimen of the nationally scarce crab *Thia scutellata* was recorded in the grab sample from station FE2_02. Small numbers have been reported from Outer Thames Estuary (NBN, 2022). The most abundant known populations for this species are off the North Wales coast, where its preferred habitat has been reported as loose, well sorted medium sands into which it can burrow easily (Rees, 2001).

5.5 Cryptogenic and Non-native Species (NNS)

Non-native species (NNS) are those that have reached the UK by accidental human transport, deliberate human introduction, or which have arrived by natural dispersion from a non-native population in Europe (Government Digital Service [GDS], 2021). Once introduced, some NNS can become established (grow and reproduce successfully) and their subsequent dispersal from the point of introduction can result in environmental and economic impact (Cottier-Cook et al., 2017). The NNS that have a negative impact on biodiversity, through the spread of disease, competition for resources, or by direct consumption, parasitism, or hybridisation, are termed 'invasive' (GDS, 2021).

Cryptogenic species are those of unknown origin, as such they are not demonstrably native nor introduced (Eno et al., 1997).

None of taxa recorded in this study are reported to be NNS or cryptogenic.

6. Conclusions

The benthic environment across the VE main array survey area was characterised through a subtidal survey which comprised acquisition of seabed video and photographic data and grab samples, which were analysed to identify habitats and to evaluate the physico-chemical and biological conditions of the seabed. The results were used to derive biotopes, in line with the EUNIS habitat classification, which were evaluated for conservation importance and contextualised within the geographical setting of the survey area.

The sediment across the VE main array survey area featured mainly sand and to a lesser extent gravel, with small percentage of fines, except for station FE1_01, in the north array which was predominantly muddy. The varying percentages of the main sediment fractions resulted in five sediment classes being identified under the Folk (BGS modified) classification, including 'gravelly sand' and 'sandy gravel', which typified most stations, and 'sand' and 'muddy sandy gravel', each typifying three stations, whereas 'gravelly mud' typified one station. The coarseness of the sediment resulted in six sediment descriptions using the Wentworth (1922) scale including 'very coarse sand' and 'coarse sand', each typifying five stations, 'medium sand' and 'very fine sand' each typifying one station, 'granule' typifying three stations and 'pebble' typifying two stations. The sediments disturbance, likely due to regional hydrodynamics, was reflected in the bimodal and multimodal distribution of sediment particle size recorded at most stations.

The concentrations of total hydrocarbons and the 22 PAHs analysed were below their respective marine SQGs across the VE main array survey area.

Of the metals analysed, arsenic concentrations were above the Canadian PEL at all stations, whereas the remaining metals had concentrations below their respective marine SQGs across the VE main array survey area. Regional contextualisation indicated that the concentrations of arsenic are within the range reported for the Outer Thames Estuary.

The concentrations of all individual PCB congeners analysed were below the limit of detection (LOD) across the VE main array survey area and the sum of the 25 congeners was below the Cefas ALs.

The organotins analysed were DBT and TBT, both having concentrations below their respective LOD and below the Cefas ALs across the VE main array survey area.

The concentrations of all OCPs analysed were below the LOD across the VE main array survey area and below the Cefas marine SQGs which currently include dieldrin and DDT.

Macrofauna from the grab samples comprised infaunal and epifaunal taxa, the latter being represented by solitary and colonial organisms. Annelida represented most of the community structure and composition of the enumerated fauna, which comprised infauna and solitary epifauna. Macrofaunal richness and abundance were variable across the survey area, being

generally higher at stations featuring coarse sediment, notably stations along the interconnector.

The faunal community structure and composition reflected the sediment diversity and associated hydrodynamics, with typical taxa including robust polychaetes and fast swimming crustaceans as well as bivalves, the latter being typical of muddy sediments. Macrofaunal richness and diversity were generally higher at stations with coarse and diverse sediment, which had also higher number of colonial epifaunal taxa, represented mainly by bryozoans, hydroids and sponges.

Two biotope complexes and one biotope were identified from the analysis of the grab samples, namely 'Deep circalittoral coarse sediment' (A5.15) 'Deep circalittoral sand' (A5.27)' and 'Polychaete-rich deep *Venus* community in offshore mixed sediments' (A5.451), the latter being the only biotope representative of the biotope complex 'Offshore circalittoral mixed sediments' (A5.45).

In addition, 'Piddocks with sparse associated fauna in sublittoral very soft chalk or clay' (A4.231), was recorded only through the seabed video and photography.

The habitats and biotopes recorded are, or are representative of, UK BAP priority habitats and include 'Subtidal sands and gravel' and 'Piddocks with sparse associated fauna in sublittoral very soft chalk or clay' (A4.231).

A single specimen of the nationally scarce crab *T. scutellata* was recorded.

No NNS or cryptogenic were recorded.

7. References

Ager, O. E. D. (2005). *Spiophanes bombyx A bristleworm*. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews. Plymouth: Marine Biological Association of the United Kingdom. https://www.marlin.ac.uk/species/detail/1705

Biodiversity Reporting and Information Group [BRIG]. (2011). *UK Biodiversity Action Plan: Priority Habitat Descriptions*. Peterborough. https://hub.jncc.gov.uk/assets/2728792c-c8c6-4b8c-9ccd-a908cb0f1432

Blott, S. (2010). *GRADISTAT Version 8.0: A grain size distribution and statistics package for the analysis of unconsolidated sediment by sieving or laser granulometer*. Berkshire: Kenneth Pye Associates.

Bryan, G.W., Gibbs, P.E., Burt, G.R., & Hummerstone, L.G. (1987). The effects of tributyltin (TBT) accumulation on adult dogwhelks, *Nucella lapillus*: long term field and laboratory experiments. *Journal of the Marine Biological Association of the United Kingdom 67*, 525-544. DOI: https://doi.org/10.1017/S0025315400027272

Bunker, F. S. P, Maggs, C. A., Brodie, J. A., and Bunker, A.R. (2012). *Seaweeds of Britain and Ireland*. Wild Nature Press, Plymouth, UK.

CABI. (2022). *Invasive Species Compendium. Wallingford, UK: CAB International.* www.cabi.org/isc

Callaway, R., Alsvåg, J., De Boois, I., Cotter, J., Ford, A., Hinz, H., Jennings, S., Kröncke, I., Lancaster, J., Piet, G., Prince, P., & Ehrich, S. (2002). Diversity and Community Structure of Epibenthic Invertebrates and Fish in the North Sea. *ICES Journal of Marine Science*, *59*, 1199-1214.

https://www.researchgate.net/publication/40793458 Diversity and community structure of e pibenthic invertebrates and fish in the North Sea

Canadian Council of Ministers of the Environment [CCME]. 2022. *Guidelines*. https://ccme.ca/en/current-activities/canadian-environmental-quality-guidelines

Cempel, M. & Nikel, G. (2006). Nickel: a review of its sources and Environmental Toxicology. *Polish Journal of Environmental Studies*, *15*(3), 375-382.

https://www.researchgate.net/publication/279907606 Nickel A Review of Its Sources and Environmental Toxicology

Centre for Environment Fisheries and Aquaculture Science [Cefas]. (2012). *Monitoring of the quality of the marine environment, 2008–2010*. Science Series Aquatic Environment Monitoring Reports, CEFAS Lowestoft, 63: 111pp.

Clarke, K. R., Somerfield, P. J. & Gorley, R. N. (2008). Testing of Null Hypothesis in Exploratory Community Analysis: Similarity Profiles and Beta-Environment Linkage. *Journal of Experimental Marine Biology and Ecology*, *366*, 56-69. https://doi.org/10.1016/j.jembe.2008.07.009

Clarke, K.R. & Gorley, R.N. (2015). PRIMER v7: User Manual/Tutorial., Plymouth: PRIMER-E.

Clarke, K.R., Gorley, R.N., Somerfield, P.J. & Warwick, R.M. (2014). *Change in marine communities: an approach to statistical analysis and interpretation*. 3rd Edition. PRIMER-E Ltd, Plymouth Marine Laboratory, UK.

Coates, D. A., Alexander, D., Herbert, R. J. H. & Crowley, S. J. (2016). *Conceptual Ecological Modelling of Shallow Sublittoral Sand Habitats to Inform Indicator Selection*. Marine Ecological Surveys Ltd. A report for the Joint Nature Conservation Committee [JNCC]. (JNCC Report No. 585). Peterborough. https://hub.jncc.gov.uk/assets/f3d0abfa-c117-4afc-aab8-13abe31e77b1

Cottier-Cook, E. J., Beveridge, C., Bishop, J. D. D., Brodie, J. Clark, P. F., Epstein, G., Jenkins, S. R., Johns, D. J. Loxton, J. MacLeod, A., Maggs, C., Minchinh, D., Mineuri, F., Sewell J. & Wood, C.A. (2017). Non-Native species. *Marine Climate Change Impact Partnership [MCCIP]: Science Review*, 47-61. doi:10.14465/2017.arc10.005-nns

Dauvin, J.C., Alizier, S., Rolet, C., Bakalem, A., Bellan, G., Gesteira, J.G., Grimes, S., De-La-Ossa-Carretero, J.A. & Del-Pilar-Ruso, Y. (2012). Response of different benthic indices to diverse human pressures. *Ecological Indicators*, *12*(1), 143-153. https://doi.org/10.1016/j.ecolind.2011.03.019

Davies, C.E. & Moss, D. (2004). *EUNIS Habitat Classification Marine Habitat Types: Revised Classification and Criteria*. Centre for Ecology & Hydrology (CEH) Dorset, Document No. C02492NEW.

Davies, I. M., 2004. *Background/reference Concentrations (BRCs) for the UK*. Fisheries Research Services Contract Report No 05/04.

de Mora, S., Sheikholeslami, M. R., Wyse, E., Azemard, S. & Cassi, R. (2004). An assessment of metal contamination in coastal sediments of the Caspian Sea. *Marine Pollution* Bulletin, *48*, 61-77.

https://www.researchgate.net/publication/8917388 An assessment of metal contamination in coastal sediments of the Caspian Sea

De-Bastos, E. S. R. (2016). *Kurtiella bidentata* and *Abra* spp. in infralittoral sandy mud. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews. Plymouth: Marine Biological Association of the United Kingdom. https://www.marlin.ac.uk/habitat/detail/1094

Delivering Alien Invasive Species Inventories for Europe [DAISIE]. (2020). *DAISIE - Inventory of alien invasive species in Europe*. Version 1.7. Research Institute for Nature and Forest (INBO). https://doi.org/10.15468/ybwd3x

Department of Trade and Industry [DTI] (2002). *North Sea Geology*. Technical report produced for Strategic Environmental Assessment – SEA2 & SEA3. Technical Report TR_008_Rev1

Díez, S., Lacorte, S., Viana, P., Barceló, D., & Bayona, J.M. (2005). Survey of organotin compounds in rivers and coastal environments in Portugal 1999-2000. *Environmental Pollution*, *136*, 525-536. DOI: 10.1016/j.envpol.2004.12.011

Eleftheriou, E. & Basford, D. J. (1989). The Macrobenthic Fauna of the Offshore Northern North Sea. *Journal of the Marine Biological Association of the United Kingdom, 69*, 123-143. https://doi.org/10.1017/S0025315400049158

Ellis, J. R., Maxwell, T., Schratzberger, M. & Rogers S.I. (2011). The benthos and fish of offshore sandbank habitats in the southern North Sea. *Journal of Marine Biological Association of the United Kingdom*, *91(6)*: 1319-1335. https://doi.org/10.1017/S0025315410001062

Eno, N.C., Clark, R. A. & Sanderson W. G. (1997). *Non-native marine species in British waters: a review and directory*. Joint Nature Conservation Committee [JNCC]. ISBN 1 86107 442 5. https://www.researchgate.net/publication/237516977 Non-Native Marine Species in British Waters A Review and Directory

European Commission [EC] (2013, April). *The Interpretation Manual of European Union Habitats – EUR28. (Pub. Nature ENV B.3).*

https://ec.europa.eu/environment/nature/legislation/habitatsdirective/docs/Int Manual EU28 .pdf

European Environment Agency [EEA]. (2019). European Nature Information Service [EUNIS] habitat type hierarchical view. http://eunis.eea.europa.eu/habitats-code-browser.jsp

European Marine Observation Data Network [EMODnet]. (2021). *Seabed habitats project*. http://www.emodnet-seabedhabitats.eu

Farrington, J. W., Frew, N. M., Gschwend, P. M., & Tripp, B. W. (1977). Hydrocarbons in cores of northwestern Atlantic coastal and continental margin sediments. *Estuarine and Coastal Marine Science*, *5*(6), 793–808. https://doi.org/10.1016/0302-3524(77)90050-0

Farrington, J.W., & Tripp, B.W. (1977). Hydrocarbons in western North Atlantic surface sediments. Geochimica and Cosmochimica Acta 41,1627–1641. https://doi.org/10.1016/0016-7037(77)90173-9

Five Estuaries Offshore Wind Farm (2021). *Benthic Subtidal & Intertidal Ecology Baseline Survey Scope of Works*. Document Reference 003428631-02, Revision 2.1.

Fofonoff, P. W., Ruiz, G. M., Steves, B., Simkanin, C. & Carlton, J. T. (2022). *National Exotic Marine and Estuarine Species Information System*. http://invasions.si.edu/nemesis/

Folk, R. L. & Ward, W. C. (1957). Brazos River bar (Texas); a study in the significance of grain size parameters. *Journal of Sedimentary Research*, *27*(1), 3-26. https://doi.org/10.1306/74d70646-2b21-11d7-8648000102c1865d

Folk, R. L. (1954). The distinction between grain size and mineral composition in sedimentary rock nomenclature. *Journal of Geology*, 65(4), 344-359. https://doi.org/10.1086/626171

Fugro. (2021a). *Fugro – WPM3 Operations/Acquisition Report – Fugro Seeker*. Fugro Document No.: 004032864. Fugro GB Marine Limited.

Fugro (2021b). Fugro - WPM1, WPM2 & WPM3 - Acquisition / Operations Report - Marshall Art. Fugro Document No. 004032865. Fugro GB Marine Limited.

Fugro (2021c). Fugro – WPM4 – ECR (Intertidal) – Benthic Intertidal Operations Report. Document No. 004076666-02. Fugro GB Marine Limited.

Fugro (2022a). Fugro - WPM1, WPM2 & WPM3 - Main Array & ECR - Environmental Features Report. Fugro Document No. 004032870. Fugro GB Marine Limited.

Fugro (2022b). Fugro – WPM1 & WPM2 Array, Interconnector & ECR Operations Report – Fugro Mercator. Fugro Document No.: 004032863. Fugro GB Marine Limited.

Fugro (2022c). Fugro – WPM1 Array Shallow Geological Results Report. Fugro Document No. 004032863. Fugro GB Marine Limited.

Fugro (in press). Fugro – WPM2, WPM3 & WPM4 – ECR & Intertidal Benthic Ecology Monitoring Report. Fugro Document No. 004032872. Fugro GB Marine Limited.

Geyer, H., Freitag, D., & Korte, F. (1984). Polychlorinated biphenyls (PCBs) in the marine environment, particularly in the Mediterranean. *Ecotoxicology and Environmental Safety*, 8(2), 129-151. https://doi.org/10.1016/0147-6513(84)90056-3

Glémarec, M. (1973). The benthic communities of the European North Atlantic Continental Shelf. *Oceanography and Marine Biology Annual Review*, *11*, 263-289.

Gofas, S. & Salas, C. (2008). A review of European 'Mysella' species (Bivalvia, Montacutidae), with description of Kurtiella new genus. Journal of Molluscan Studies, 78, 119-135. https://www.researchgate.net/publication/249276799 A review of European 'Mysella' species Bivalvia Montacutidae with description of Kurtiella new genus

Golding. N., Albrecht. J. & McBreen. F. (2020.) *Refining criteria for defining areas with a 'low resemblance' to Annex I stony reef; Workshop Report*. (JNCC Report No. 656). Joint Nature Conservation Committee [JNCC], Peterborough, ISSN 0963-8091.

https://data.jncc.gov.uk/data/4b60f435-727b-4a91-aa85-9c0f99b2c596/JNCC-Report-656-FINAL-WEB.pdf

Government Digital Service [GDS] (2021). Strategy for England's wildlife and ecosystem services, biodiversity 2020 indicators Trends in pressure on biodiversity - invasive species. https://assets.publishing.service.gov.uk/government/uploads/system/uploads/attachment_data/file/925441/20 Pressure from invasive species 2020 accessible.pdf

Gubbay, S. (2007) *Defining and managing Sabellaria spinulosa reefs: Report of an inter-agency workshop 1-2 May 2007*. Joint Nature Conservation Committee (JNCC) Report No. 405. https://data.jncc.gov.uk/data/ecdbc5ba-e200-47e3-b7c6-adf464287712/JNCC-Report-405-FINAL-WEB.pdf

Hartley, J. P. (1996). Environmental monitoring of offshore oil and gas drilling discharges—A caution on the use of barium as a tracer. *Marine Pollution Bulletin*, *32*(10), 727–733. https://doi.org/10.1016/0025-326x(96)00033-1

Hein, F. J. (2007). The Size Analyses in Marine Geotechnical Studies. In S. J. P. M. (Eds). *Principles, Methods and Application of Particle Size Analysis* (pp. 346-362). Cambridge University Press.

Heip, C., Basford, J.A., Craeymeersch, J.A., Dewarumez, J. Dörjes, J., De Wilde, P., Duineveld, G., Eleftheriou, A., Herman, P.M.J., Niermann, U. Kingstone, P., Künitzer, A., Rechor, E. Rumohr, H., Soetaert, K. & Soltwedel, T. (1992). Trends in biomass, density and diversity of North Sea macrofauna. *ICES Journal of Marine Science*, 49, 13-22.

https://www.researchgate.net/publication/237091107 Trends in Biomass Density and Divers ity of North-Sea Macrofauna

Hendrick, V.J. & Foster-Smith, R.L. (2006). *Sabellaria spinulosa* reef: a scoring system for evaluating 'reefiness' in the context of the Habitats Directive. *Journal of the Marine Biological Association of the United Kingdom*, 86, pp. 665-677.

https://www.dassh.ac.uk/dataDelivery/filestore/8/9/0/3 50fd853b85cfdfd/8903 4a9196bfd29f 418.pdf

Herbert, R.J.H., Roberts, C. Humphreys, J & Fletcher, S. (2021). *The Pacific oyster (Crassostrea gigas) in the UK: Economic, legal and environmental issues associated with its cultivation, wild establishment and exploitation.* Report for the Shellfish Association of Great Britain.

Hill, J. M. (2008). *Echinocardium cordatum Sea potato*. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews. Plymouth: Marine Biological Association of the United Kingdom.

https://www.marlin.ac.uk/species/detail/1417

Hitchin, R., Turner, J.A., & Verling, E. (2015). *Epibiota Remote Monitoring from Digital Imagery: Operational Guidelines*.

http://www.nmbagcs.org/media/1591/epibiota operational guidelines final.pdf

Howson, C.M. & Picton, B.E. (Eds). (1997). *The species directory of the marine fauna and flora of the British Isles and surrounding seas* (Ulster Museum Publication No. 276). Ulster Museum.

Huang, G., Bai, Z., Dai, S., & Xie, Q. (2004). Accumulation and toxic effect of organometallic compounds on algae. *Applied Organometallic Chemistry*, *7*(6), 373-380. DOI:10.1002/AOC.590070604

International Union for Conservation of Nature [IUCN]. (2022). *The IUCN red list of threatened species*. Version 2021-3. https://www.iucnredlist.org

Irving R. A. (1998). The seabed. In Barne JH, Robson CF, Kaznowska SS, Doody JP, Davidson NC Buck AL (Eds), *Coasts and seas of the United Kingdom. Region 7 South-west England: Lowestoft to Dungeness.* pp 67-72. Peterborough, Joint Nature Conservation Committee (Coastal Directory Series). https://data.jncc.gov.uk/data/6473ed35-d1cb-428e-ad69-eb81d6c52045/pubs-csuk-region-07.pdf

Irving, R. (2009). *The identification of the main characteristics of stony reef habitats under the Habitats Directive. Summary report of an inter-agency workshop 26-27 March 2008* (Report No. 432). Joint Nature Conservation Committee [JNCC].

http://data.jncc.gov.uk/data/21693da5-7f59-47ec-b0c1-a3a5ce5e3139/JNCC-Report-432-FINAL-WEB.pdf

Jackson, A. (2008). *Ophiothrix fragilis Common brittlestar*. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews. Plymouth: Marine Biological Association of the United Kingdom.

https://www.marlin.ac.uk/species/detail/1198

Jackson, A. (2008). *Psammechinus miliaris Green sea urchin*. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews. Plymouth: Marine Biological Association of the United Kingdom. https://www.marlin.ac.uk/species/detail/1189

Jenkins, C., Eggleton, J. Albrecht, J., Barry, J., Duncan, G., Golding, N. & O'Connor, J. (2015). North Norfolk Sandbanks and Saturn Reef cSAC/SCI management investigation report. JNCC/Cefas Partnership Report, No. 7. https://data.jncc.gov.uk/data/c09e7cc0-b4dd-4b28-918c-277301806738-NNSB-FINAL-REPORT-2015101.pdf

Jennings, S., Lancaster, J., Woolmer, A. & Cotter, J. (1999). Distribution, Diversity and Abundance of Epibenthic Fauna in the North Sea. *Journal of the Marine Biological Association of the UK, 79*, 385-399.

https://www.researchgate.net/publication/216900288 Distribution diversity and abundance of epibenthic fauna in the North Sea

Joint Nature Conservation Committee [JNCC]. (2015). *The Marine Habitat Classification for Britain and Ireland Version 15.03*. https://mhc.incc.gov.uk/about/

Joint Nature Conservation Committee [JNCC] (2016). *Review of the MCZ Features of Conservation Importance. JNCC and Natural England, Peterborough.* https://data.jncc.gov.uk/data/94f961af-0bfc-4787-92d7-0c3bcf0fd083/MCZ-review-foci-201605-v7.0.pdf

Joint Nature Conservation Committee [JNCC] (2018). *Marine habitat correlation tables version* 201801 – spreadsheet version 2018. https://hub.jncc.gov.uk/assets/62a16757-e0d1-4a29-a98e-948745804aec

Joint Nature Conservation Committee [JNCC] (2019). UK Biodiversity Action Plan. https://jncc.gov.uk/our-work/uk-bap/

Joint Nature Conservation Committee [JNCC]. (n.d.). *Annex I habitats list*. https://sac.jncc.gov.uk/habitat/

Joint Nature Conservation Committee [JNCC]. (n.d.). *Annex II species list*. https://sac.jncc.gov.uk/species/

Jones, L.A., Coyle, M.D., Evans, D., Gilliland, P.M. & Murray, A.R. (2005). *Southern North Sea Marine Natural Area Profile: A contribution to regional planning and management of the seas around England*. Peterborough: English Nature (now Natural England). http://publications.naturalengland.org.uk/file/60008

Kakkonen, J.E, Worsfold, T.M, Ashelby, C.W., Taylor, A. & Beaton, K. (2019). The value of regular monitoring and diverse sampling techniques to assess aquatic non-native species: a case study from Orkney. *Management of Biological Invasions* 10(1), 47-49.

https://www.proquest.com/docview/2285117742?pg-origsite=gscholar&fromopenview=true

Keith, L.H. (2015). The source of US EPA's sixteen PAH priority pollutants. *Polycyclic Aromatic Compounds*, *35*(2-4), 147-160. https://doi.org/10.1080/10406638.2014.892886

Künitzer, A., Basford, D., Craeymeersch, J.A., Dewarumez, J.M., Dörjes, J., Duineveld, G.C.A., Eleftheriou, A., Heip, C. Herman, P. Kingston, P., Niermann, U., Rachor, E., Rumohr, H. & De Wilde, P.A.J. (1992). The benthic infauna of the North Sea: species distribution and assemblages. *ICES Journal of Marine Science*, 49, 127-143. https://www.researchgate.net/publication/249283769 The benthic infauna of the North Sea species distribution and assemblages

Limpenny, D.S., Foster-Smith, R.L., Edwards, T.M., Hendrick, V.J., Diesing, M., Eggleton, J.D., Meadow, W.J., Crutchfield, Z., Pfeifer, S. and Reach, I.S. (2010). *Best Methods for Identifying and Evaluating Sabellaria spinulosa and Cobble Reef. Aggregate Levy Sustainability Fund Project. MAL0008*. Joint Nature Conservation Committee, Peterborough, pp. 134, ISBN – 978 0 907545 33 0.

Long, D. (2006). *BGS Detailed explanation of seabed sediment modified Folk classification*. MESH (Mapping European Seabed Habitats).

https://www.researchgate.net/publication/284511408 BGS detailed explanation of seabed sediment modified folk classification

Long, E.R, MacDonald, D.D., Smith, S.L. & Calder, F.D. (1995). Incidence of adverse biological effects within ranges of chemical concentrations in marine and estuarine sediments. *Environmental Management*. DOI: 10.1007/BF02472006.

https://www.researchgate.net/publication/225598600

Marine Aggregate Levy Sustainability Fund [MALSF]. (2009). *Outer Thames Estuary Regional Environmental Characterisation*. Report commissioned by the Marine Environment Protection Fund (MEPF). https://eprints.soton.ac.uk/153173/

Marine Management Organisation [MMO]. (2015). *High level review of current UK action level guidance*. A report produced for the Marine Management Organisation. (MMO Project No: 1053). Marine Management Organisation.

Mason, C. (2016). *NMBAQC's Best Practice Guidance*. Particle Size Analysis (PSA) for Supporting Biological Analysis. 77pp. http://www.nmbaqcs.org/media/1255/psa-quidance-update18012016.pdf

Mason, C., Vivian, C., Griffith, A., Warford, L., Hynes, C., Barber, J., Sheahan, D., Bersuder, P., Bakir, A., & Lonsdale, J.-A. (2022) Reviewing the UK's Action Levels for the Management of Dredged Material. *Geosciences 12*(3). https://doi.org/10.3390/geosciences12010003

Murray E, Dalkin MJ, Fortune F, & Begg K (1999) *Marine Nature Conservation Review Sector 2.*Orkney: area summaries. Coasts and seas of the United Kingdom, MNCR series. Joint Nature Conservation Committee, Peterborough, U.K., 122 pp.

National Biodiversity Network [NBN]. (2021). NBN Atlas http://www.nbnatlas.org

Neff, J.M. (1997). Ecotoxicology of arsenic in the marine environment – Review. Environmental *Toxicology and Chemistry, 16*(5), 917–927.

https://www.researchgate.net/publication/229608565 Ecotoxicology of Arsenic in the Marin e Environment - Review

Non-native Species Secretariat [NNSS]. (2021). *The GB non-native species secretariat website*. http://www.nonnativespecies.org/home/index.cfm

Nriagu, J.O. (1990). Global metal Pollution: Poisoning the Biosphere? *Environment: Science and Policy for Sustainability Development, 32*(7), 7-33. https://doi.org/10.1080/00139157.1990.9929037

Oslo and Paris Commission [OSPAR]. (2013). *Levels and trends in marine contaminants and their biological effects – CEMP Assessment report 2012. Monitoring and Assessment Series*. (OSPAR Publication No. 596/2013).

Oslo and Paris Commission [OSPAR]. (2014). Levels and trends in marine contaminants and their biological effects – CEMP assessment report 2013. Monitoring and Assessment Series. OSPAR Publication No. 631/2014). OSPAR Commission.

Oslo and Paris Commission [OSPAR]. (2021). *List of Threatened and/or Declining Species & Habitats*. https://www.ospar.org/work-areas/bdc/species-habitats/list-of-threatened-declining-species-habitats

Pearce, B., Farinas-Franco, J.M., Wilson, C., Pitts, J., Deburgh, A. & Somerfield, P.J. 2014. Repeated Mapping of Reefs Constructed by <u>Sabellaria spinulosa</u> Leuckart 1849 at an offshore wind farm site. *Continental Shelf Research*, 83, 3-13.

https://www.researchgate.net/publication/260270827 Repeated mapping of reefs construct ed by Sabellaria spinulosa Leuckart 1849 at an offshore wind farm site

Readman, J.W., Fillmann. G., Tolosa. I., Bartocci. J., Villeneuve. J.P., Catinni. C., & Mee, L.D. (2002). Petroleum and PAH contamination of the Black Sea. Marine Pollution Bulletin, 44, 48 62. https://doi.org/10.1016/S0025-326X(01)00189-8

Rees, E.I.S. (2001). Habitat specialization by *Thia scutellata* (Decapoda: Brachyura) off Wales. *Journal of the Marine Biological Association of the United Kingdom, 81*(4), 697-694. DOI: https://doi.org/10.1017/S0025315401004404.

Rees, H. L., Eggleton, J. D., Rachor, E. & Vanden Berghe, E. (2007). *Structure and Dynamics of the North Sea Benthos*. ICES Cooperative Research Report no. 288, 258 pp. https://www.ices.dk/sites/pub/Publication%20Reports/Cooperative%20Research%20Report%20(CRR)/CRR288.pdf

Roche, C., Lyons, D. O., Farinas Franco, J. & O'Connor, B. (2007). *Benthic surveys of sandbanks in the Irish Sea. Irish Wildlife Manuals, No. 29.* National Parks and Wildlife Service, Department of Environment, Heritage and Local Government, Dublin, Ireland.

Sabatini, M. & Ballerstedt, S. (2008). *Nucula nitidosa*. *A bivalve mollusc*. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews. Plymouth: Marine Biological Association of the United Kingdom. https://www.marlin.ac.uk/species/detail/1700

Simboura, N., Sigala, K., Voutsinas, E., & Kalan, E. (2008). First occurrence of the invasive alien species *Polydora cornuta* Bosc, 1802 (Polychaeta: Spionidae) on the coast of Greece (Elefsis Bay; Aegean Sea). *Mediterranean Marine Science*, 9(2), 119-124.

The Marine Biological Association of the UK. (2021). *The Marine Life Information Network*. https://www.marlin.ac.uk/

Tillin, H.M. (2016). *Polychaete-rich deep Venus community in offshore gravelly muddy sand*. In TylerWalters H. and Hiscock K. (eds) Marine Life Information Network: Biology and Sensitivity Key Information Reviews. Plymouth: Marine Biological Association of the United Kingdom. DOI https://dx.doi.org/10.17031/marlinhab.1117.1

Tillin, H.M., Tyler-Walters, H. & Garrard, S. L. (2019). *Infralittoral mobile clean sand with sparse fauna*. In Tyler-Walters H. and Hiscock K. (eds) Marine Life Information Network: Biology and

Sensitivity Key Information Reviews. Plymouth: Marine Biological Association of the United Kingdom. https://www.marlin.ac.uk/habitat/detail/262

Vane, C.H., Turner, G.H., Cheney, S.R., Richardson, M., Cave, M.C., Terrington, R., Gowing, C,J.B. & Moss-Hayes, V. (2020). Trends in heavy metals, polychlorinated biphenyls and toxicity from sediment cores of the inner River Thames estuary, London, UK. *Environmental Science: Processes Impacts, 22*, 364-380. DOI: 10.1039/c9em00430k

Volkman, J.J., Holdsworth, D.J., Neill, G.P., & Bavor, H.J., Jr. 1992. Identification of natural, anthropogenic and petroleum hydrocarbons in aquatic sediments. *Science of the Total Environment 112 (2-3)*, 203-219. https://doi.org/10.1016/0048-9697(92)90188-X

Walker, A. J. M. & Rees, E. I. S. (1980). Benthic ecology of Dublin Bay in relation to sludge dumping. *Irish Fisheries Investigation Series B (Marine)*, 22, 1-59.

Wentworth, C.K. (1922). A scale of grade and class terms for clastic sediments. *Journal of Geology*, 30, 377-392. https://doi.org/10.1086/622910

Whalley, C., Rowlatt, S., Bennet, M. & Lavell, D., 1999. Total Arsenic in Sediments from the Western North Sea and the Humber Estuary. *Marine Pollution Bulletin*, *38*(5), 394-400.

World Register of Marine Species [WoRMS] Editorial Board (2022). *World register of marine species*. https://www.marinespecies.org

Worsfold, T.M., Hall, D.J. & O'Reilly, M. (Ed.). (2010). *Guidelines for processing marine macrobenthic invertebrate samples: a Processing Requirements Protocol*: Version 1.0, June 2010. Report to the NMBAQC Committee.

Appendices

Appendix A Guidelines on Use of Report

Appendix B Methodologies

B.1 Survey Methods

Appendix C Logs

- C.1 Subtidal Survey Log
- C.2 Grab Log
- C.3 Video and Photographic Log

Appendix D Sediment Particle Size and Grab Sample Photographs

Appendix E Chemistry Analysis Certificates

Appendix F Macrofaunal Analysis

- F.1 Subtidal Grabs Macrofaunal Abundance
- F.2 Subtidal Grabs Macrofaunal Biomass

Appendix A

Guidelines on Use of Report

This report (the "Report") was prepared as part of the services (the "Services") provided by Fugro GB Marine Limited ("Fugro") for its client (the "Client") under terms of the relevant contract between the two parties (the "Contract"). The Services were performed by Fugro based on requirements of the Client set out in the Contract or otherwise made known by the Client to Fugro at the time.

Fugro's obligations and liabilities to the Client or any other party in respect of the Services and this Report are limited in time and value as defined in Contract (or in the absence of any express provision in the Contract as implied by the law of the Contract) and Fugro provides no other representation or warranty whether express or implied, in relation to the Services or for the use of this Report for any other purpose. Furthermore, Fugro has no obligation to update or revise this Report based on changes in conditions or information which emerge following issue of this Report unless expressly required by the Contract.

The Services were performed by Fugro exclusively for the Client and any other party identified in the Contract for the purpose set out therein. Any use and/or reliance on the Report or the Services for purposes not expressly stated in the Contract, by the Client or any other party is that party's risk and Fugro accepts no liability whatsoever for any such use and/or reliance.

Appendix B

Methodologies

B.1 Survey Methods

B.1.1 Sediment Grab Sampling

Faunal and particle size distribution (PSD) samples were acquired using a 0.1 m² mini Hamon grab. Chemistry samples were acquired using a 0.1 m² Day grab.

Operational procedures for grab sampling were as follows:

- The grab was prepared for operations prior to arrival on station. The Bridge communicated to the deck via a VHF radio when the vessel was steady and on location, and the grab was deployed from the stern A-frame;
- When the engineer operating the winch observed that the grab had reached the seabed (evidenced through a distinct slackening of the wire rope and snatch block), the environmental surveyor was informed (via VHF radio) and a fix was taken;
- On recovery to the deck, the sample was inspected and judged acceptable or otherwise (see below for rejection criteria);
- One accepted grab sample was retained for faunal analysis and PSD and another grab sample was subsampled for PC analysis;
- Deck logs were completed for each sample acquired (including no samples) with date, time, sample number, fix number, sediment type, depth and colour of strata in the sediment (if any), odour (i.e. H₂S), bioturbation or debris.

Samples were considered unacceptable in the following instances:

- Evidence of sediment washout caused through improperly closed grab jaws or inspection hatch;
- Sediment sample taken on an angle; where the grab jaws have not been parallel to the seabed when the grab fired;
- Disruption of the sample through striking the side of the vessel;
- Sample too small for requirements. Sample represented less than approximately 5 cm bite depth of the dual van Veen grab or Day grab, minimum sample size for 0.1 m² Hamon grab;
- Deemed unacceptable by the client representative for any other reason.

B.1.1.1 Physico-chemical Sample Processing

- Particle size distribution (PSD) samples were collected using a plastic scoop and subsampled from the faunal sample obtained by the mini Hamon grab.
- Hydrocarbon samples were collected using a metal scoop to a nominal depth of 2 cm. The samples were preserved in glass jars at approximately -20 °C;
- Heavy metal samples were collected using a plastic scoop to a nominal depth of 2 cm. The samples were preserved in polythene bags at approximately -20 °C;

B.1.1.2 Macrofauna Sample Processing

Macrofauna samples were processed as follows:

- Macrofauna samples were processed in their entirety, by opening the spades to drop the grab into a container. All supernatant water was processed along with the sediment;
- The sample was transferred to a chute and stand and washed through a 1.0 mm mesh sieve;
- Once sieved samples were transferred to containers labelled with the job number, station code and fauna code (e.g., FA) and fixed in 10 % buffered formal saline. The sample containers were then sealed, hazard labelled and stored securely on deck.

Appendix C Logs

C.1 Subtidal Survey Log

Geodetic Para	Geodetic Parameters: WGS 84, UTM Zone 31 N [m] Water Proposed Location Actual Location													
	Time			Sample Rep /		Water	Proposed	l Location	Actual l	Location	Offset			
Date	[UTC]	Transect	Туре	Still No.	Fix No.	Depth [m BSL]	Easting	Northing	Easting	Northing	[m]			
10/11/2021	01:46:05	FE2_01	HG	FA	37	37	435 851.0	5 742 898.0	435 857.3	5 742 896.9	6.4			
10/11/2021	02:18:12	FE2_02	HG	FA	38	52	436 225.0	5 741 075.0	436 222.5	5 741 088.0	13.2			
10/11/2021	03:00:57	FE2_03	HG	FA	39	50	437 540.0	5 737 498.0	437 539.7	5 737 482.5	15.5			
10/11/2021	03:52:48	FE2_03	DG	NS	40	50	437 540.0	5 737 498.0	437 543.0	5 737 503.2	6.0			
10/11/2021	04:12:57	FE2_03	DG	NS	41	50	437 540.0	5 737 498.0	437 532.9	5 737 498.9	7.1			
10/11/2021	04:38:45	FE2_03	DG	NS	42	50	437 540.0	5 737 498.0	437 541.0	5 737 495.6	2.6			
10/11/2021	05:00:50	FE2_03	DG	NS	43	50	437 540.0	5 737 498.0	437 539.9	5 737 509.6	11.6			
10/11/2021	05:19:56	FE2_03	DG	NS	44	50	437 540.0	5 737 498.0	437 539.0	5 737 500.8	3.0			
10/11/2021	05:36:32	FE2_03	DG	NS	45	50	437 540.0	5 737 498.0	437 529.6	5 737 503.4	11.7			
10/11/2021	05:39:08	FE2_03	DG	SC	46	50	437 540.0	5 737 498.0	437 495.0	5 737 418.7	91.1			
10/11/2021	07:09:26	FE2_06	HG	NS	47	50	441 940.3	5 739 316.1	441 950.9	5 739 312.1	11.3			
10/11/2021	07:48:56	FE2_04	HG	FA	48	50	439 870.0	5 742 101.0	439 887.4	5 742 099.2	17.5			
10/11/2021	08:15:26	FE2_06	HG	FA	49	50	441 940.3	5 739 316.1	441 937.1	5 739 315.4	3.2			
10/11/2021	08:53:29	FE2_05	HG	NS	50	46	442 677.0	5 743 137.0	442 699.4	5 743 135.4	22.4			
10/11/2021	09:04:48	FE2_05	HG	NS	51	46	442 677.0	5 743 137.0	442 679.2	5 743 146.0	9.3			
10/11/2021	09:12:04	FE2_05	HG	FA	52	46	442 677.0	5 743 137.0	442 684.3	5 743 140.8	8.2			
10/11/2021	09:46:08	FE3_02	HG	NS	53	50	439 733.8	5 745 513.7	439 730.0	5 745 522.7	9.8			
10/11/2021	10:15:02	FE3_02	HG	NS	54	50	439 733.8	5 745 513.7	439 731.4	5 745 501.1	12.9			
10/11/2021	10:24:03	FE3_02	HG	FA	55	50	439 733.8	5 745 513.7	439 736.7	5 745 508.7	5.8			

Geodetic Para	meters: WGS	S 84, UTM Zone 3	31 N [m]								
	Time			Sample Rep /		Water	Proposed	d Location	Actual I	Location	Offset
Date	[UTC]	Transect	Туре	Still No.	Fix No.	Depth [m BSL]	Easting	Northing	Easting	Northing	[m]
10/11/2021	11:15:40	FE3_01	DG	SC	56	52	440 936.2	5 748 447.8	440 948.2	5 748 452.0	12.7
10/11/2021	11:45:41	FE3_01	HG	FA	57	52	440 936.2	5 748 447.8	440 933.5	5 748 446.2	3.2
10/11/2021	12:30:41	FE3_03	HG	FA	58	52	442 019.7	5 751 415.1	442 021.0	5 751 430.3	15.3
10/11/2021	13:13:36	FE1_01	HG	NS	59	35	437 904.9	5 754 004.2	437 885.1	5 754 002.7	19.8
10/11/2021	13:22:27	FE1_01	HG	FA	60	35	437 904.9	5 754 004.2	437 900.5	5 754 008.1	5.9
10/11/2021	13:59:07	FE1_03	HG	FA	61	-	439 237.0	5 755 430.0	439 233.4	5 755 425.7	5.6
10/11/2021	15:03:19	FE1_05	HG	FA	62	47	442 807.0	5 755 913.0	442 804.7	5 755 900.6	12.6
10/11/2021	15:59:43	FE1_05	DG	sc	63	47	442 807.0	5 755 913.0	442 816.6	5 755 909.9	10.1
10/11/2021	16:33:18	FE1_04	HG	FA	64	40	440 530.0	5 757 411.0	440 540.7	5 757 414.0	11.1
10/11/2021	18:26:35	FE1_02	HG	NS	65	38	439 440.8	5 759 631.3	439 454.1	5 759 646.4	20.1
10/11/2021	18:34:26	FE1_02	HG	FA	66	38	439 440.8	5 759 631.3	439 441.7	5 759 646.8	15.5
10/11/2021	19:12:12	FE1_06	HG	NS	67	43	442 882.0	5 760 008.2	442 889.0	5 760 028.1	21.1
10/11/2021	19:29:53	FE1_06	HG	FA	68	43	442 882.0	5 760 008.2	442 887.4	5 760 017.8	11.0
10/11/2021	20:06:24	FE1_07	HG	FA	69	48	447 081.0	5 758 229.0	447 079.1	5 758 232.8	4.2
10/11/2021	21:36:01	FE1_08	HG	FA	75	48	450 866.0	5 759 026.0	450 856.0	5 759 015.6	14.4
11/11/2021	01:17:45	FE1_02	Video	SOL	76	39	439 440.8	5 759 631.3	439 406.0	5 759 518.7	117.8
11/11/2021	01:43:57	FE1_02	Still	FE1_02_01	77	-	439 440.8	5 759 631.3	439 422.8	5 759 560.7	72.8
11/11/2021	01:44:30	FE1_02	Still	FE1_02_02	78	-	439 440.8	5 759 631.3	439 425.2	5 759 580.0	53.6
11/11/2021	01:44:44	FE1_02	Still	FE1_02_03	79	-	439 440.8	5 759 631.3	439 428.2	5 759 585.9	47.1
11/11/2021	01:45:10	FE1_02	Still	FE1_02_04	80	-	439 440.8	5 759 631.3	439 433.5	5 759 593.7	38.3
11/11/2021	01:45:24	FE1_02	Still	FE1_02_05	81	-	439 440.8	5 759 631.3	439 434.5	5 759 597.8	34.1

Geodetic Para	meters: WGS	84, UTM Zone	31 N [m]								
	Time			Sample Rep /		Water	Proposed	d Location	Actual I	Location	Offset
Date	[UTC]	Transect	Туре	Still No.	Fix No.	Depth [m BSL]	Easting	Northing	Easting	Northing	[m]
11/11/2021	01:45:40	FE1_02	Still	FE1_02_06	82	-	439 440.8	5 759 631.3	439 433.9	5 759 604.4	27.8
11/11/2021	01:45:49	FE1_02	Still	FE1_02_07	83	-	439 440.8	5 759 631.3	439 434.2	5 759 608.2	24.1
11/11/2021	01:45:57	FE1_02	Still	FE1_02_08	84	-	439 440.8	5 759 631.3	439 434.5	5 759 611.8	20.5
11/11/2021	01:46:23	FE1_02	Still	FE1_02_09	86	-	439 440.8	5 759 631.3	439 429.9	5 759 620.0	15.7
11/11/2021	01:46:35	FE1_02	Still	FE1_02_10	87	-	439 440.8	5 759 631.3	439 427.3	5 759 623.0	15.8
11/11/2021	01:46:50	FE1_02	Still	FE1_02_11	88	-	439 440.8	5 759 631.3	439 428.0	5 759 625.4	14.1
11/11/2021	01:46:59	FE1_02	Still	FE1_02_12	89	-	439 440.8	5 759 631.3	439 428.5	5 759 627.7	12.8
11/11/2021	01:47:06	FE1_02	Still	FE1_02_13	90	-	439 440.8	5 759 631.3	439 428.5	5 759 630.1	12.3
11/11/2021	01:47:20	FE1_02	Still	FE1_02_14	91	-	439 440.8	5 759 631.3	439 429.7	5 759 635.7	11.9
11/11/2021	01:47:31	FE1_02	Still	FE1_02_15	92	-	439 440.8	5 759 631.3	439 431.0	5 759 639.0	12.5
11/11/2021	01:47:39	FE1_02	Video	EOL	93	-	439 440.8	5 759 631.3	439 431.5	5 759 641.1	13.5
11/11/2021	02:52:02	FE1_01	Video	SOL	95	35	437 904.9	5 754 004.2	437 890.1	5 753 946.9	59.2
11/11/2021	02:52:11	FE1_01	Still	FE1_01_01	96	-	437 904.9	5 754 004.2	437 892.6	5 753 950.6	55.0
11/11/2021	02:52:18	FE1_01	Still	FE1_01_02	97	-	437 904.9	5 754 004.2	437 893.9	5 753 952.9	52.5
11/11/2021	02:52:28	FE1_01	Still	FE1_01_03	98	-	437 904.9	5 754 004.2	437 895.1	5 753 956.9	48.3
11/11/2021	02:52:35	FE1_01	Still	FE1_01_04	99	-	437 904.9	5 754 004.2	437 896.1	5 753 959.6	45.5
11/11/2021	02:52:42	FE1_01	Still	FE1_01_05	100	-	437 904.9	5 754 004.2	437 897.9	5 753 962.0	42.8
11/11/2021	02:52:50	FE1_01	Still	FE1_01_06	101	-	437 904.9	5 754 004.2	437 900.6	5 753 964.7	39.8
11/11/2021	02:52:56	FE1_01	Still	FE1_01_07	102	-	437 904.9	5 754 004.2	437 901.9	5 753 966.7	37.6
11/11/2021	02:53:04	FE1_01	Still	FE1_01_08	103	-	437 904.9	5 754 004.2	437 902.7	5 753 969.7	34.6
11/11/2021	02:53:13	FE1_01	Still	FE1_01_09	104	-	437 904.9	5 754 004.2	437 902.2	5 753 973.0	31.3

	Time			Sample Rep /		Water	Propose	d Location	Actual	Location	Offset
Date	[UTC]	Transect	Туре	Still No.	Fix No.	Depth [m BSL]	Easting	Northing	Easting	Northing	[m]
11/11/2021	02:53:25	FE1_01	Still	FE1_01_10	105	-	437 904.9	5 754 004.2	437 898.3	5 753 978.0	27.0
11/11/2021	02:53:31	FE1_01	Still	FE1_01_11	106	-	437 904.9	5 754 004.2	437 896.7	5 753 980.6	25.0
11/11/2021	02:53:37	FE1_01	Still	FE1_01_12	107	-	437 904.9	5 754 004.2	437 895.3	5 753 983.3	23.0
11/11/2021	02:53:44	FE1_01	Still	FE1_01_13	108	-	437 904.9	5 754 004.2	437 895.2	5 753 986.1	20.5
11/11/2021	02:53:49	FE1_01	Still	FE1_01_14	109	-	437 904.9	5 754 004.2	437 895.3	5 753 988.1	18.7
11/11/2021	02:53:58	FE1_01	Still	FE1_01_15	110	-	437 904.9	5 754 004.2	437 896.6	5 753 991.9	14.9
11/11/2021	02:54:07	FE1_01	Still	FE1_01_16	111	-	437 904.9	5 754 004.2	437 897.6	5 753 994.9	11.8
11/11/2021	02:54:16	FE1_01	Still	FE1_01_17	112	-	437 904.9	5 754 004.2	437 898.0	5 753 998.6	8.9
11/11/2021	02:54:21	FE1_01	Still	FE1_01_18	113	-	437 904.9	5 754 004.2	437 897.7	5 754 001.2	7.8
11/11/2021	02:54:24	FE1_01	Still	FE1_01_19	114	-	437 904.9	5 754 004.2	437 897.7	5 754 002.1	7.5
11/11/2021	02:54:30	FE1_01	Still	FE1_01_20	115	-	437 904.9	5 754 004.2	437 898.3	5 754 004.5	6.6
11/11/2021	02:54:38	FE1_01	Still	FE1_01_21	116	-	437 904.9	5 754 004.2	437 899.4	5 754 007.6	6.4
11/11/2021	02:54:52	FE1_01	Still	FE1_01_22	117	-	437 904.9	5 754 004.2	437 902.4	5 754 012.9	9.1
11/11/2021	02:55:00	FE1_01	Video	EOL	118	-	437 904.9	5 754 004.2	437 903.6	5 754 016.1	11.9
11/11/2021	03:30:06	FE1_04	Video	SOL	119	41	440 530.0	5 757 411.0	440 525.7	5 757 342.2	69.0
11/11/2021	03:30:23	FE1_04	Still	FE1_04_01	120	-	440 530.0	5 757 411.0	440 528.9	5 757 347.5	63.6
11/11/2021	03:30:33	FE1_04	Still	FE1_04_02	121	-	440 530.0	5 757 411.0	440 529.3	5 757 351.8	59.3
11/11/2021	03:30:41	FE1_04	Still	FE1_04_03	122	-	440 530.0	5 757 411.0	440 528.0	5 757 354.8	56.2
11/11/2021	03:30:45	FE1_04	Still	FE1_04_04	123	-	440 530.0	5 757 411.0	440 527.5	5 757 356.5	54.6
11/11/2021	03:30:50	FE1_04	Still	FE1_04_05	124	-	440 530.0	5 757 411.0	440 526.6	5 757 358.8	52.3
11/11/2021	03:31:01	FE1_04	Still	FE1_04_06	125	-	440 530.0	5 757 411.0	440 523.0	5 757 364.3	47.3

Geodetic Para	ameters: WGS	84, UTM Zone 3	31 N [m]								
	Time			Sample Rep /		Water	Proposed	d Location	Actual	Location	Offset
Date	[UTC]	Transect	Type	Still No.	Fix No.	Depth [m BSL]	Easting	Northing	Easting	Northing	[m]
11/11/2021	03:31:07	FE1_04	Still	FE1_04_07	126	-	440 530.0	5 757 411.0	440 521.4	5 757 367.5	44.4
11/11/2021	03:31:21	FE1_04	Still	FE1_04_08	127	-	440 530.0	5 757 411.0	440 520.4	5 757 374.1	38.1
11/11/2021	03:31:28	FE1_04	Still	FE1_04_09	128	-	440 530.0	5 757 411.0	440 522.9	5 757 376.5	35.3
11/11/2021	03:31:42	FE1_04	Still	FE1_04_10	129	-	440 530.0	5 757 411.0	440 524.6	5 757 381.6	29.9
11/11/2021	03:31:51	FE1_04	Still	FE1_04_11	130	-	440 530.0	5 757 411.0	440 523.0	5 757 385.1	26.8
11/11/2021	03:32:05	FE1_04	Still	FE1_04_12	131	-	440 530.0	5 757 411.0	440 523.1	5 757 389.3	22.8
11/11/2021	03:32:16	FE1_04	Still	FE1_04_13	132	-	440 530.0	5 757 411.0	440 522.3	5 757 394.1	18.6
11/11/2021	03:32:26	FE1_04	Still	FE1_04_14	133	-	440 530.0	5 757 411.0	440 522.8	5 757 398.9	14.1
11/11/2021	03:32:39	FE1_04	Still	FE1_04_15	134	-	440 530.0	5 757 411.0	440 523.4	5 757 405.1	8.8
11/11/2021	03:32:49	FE1_04	Still	FE1_04_16	135	-	440 530.0	5 757 411.0	440 524.3	5 757 410.1	5.7
11/11/2021	03:33:01	FE1_04	Still	FE1_04_17	136	-	440 530.0	5 757 411.0	440 526.9	5 757 415.8	5.8
11/11/2021	03:33:06	FE1_04	Still	FE1_04_18	137	-	440 530.0	5 757 411.0	440 528.0	5 757 417.6	6.9
11/11/2021	03:33:17	FE1_04	Still	FE1_04_19	138	-	440 530.0	5 757 411.0	440 530.4	5 757 422.1	11.1
11/11/2021	03:33:22	FE1_04	Still	FE1_04_20	139	-	440 530.0	5 757 411.0	440 531.6	5 757 424.2	13.3
11/11/2021	03:33:36	FE1_04	Still	FE1_04_21	140	-	440 530.0	5 757 411.0	440 532.9	5 757 430.3	19.5
11/11/2021	03:33:44	FE1_04	Still	FE1_04_22	141	-	440 530.0	5 757 411.0	440 533.0	5 757 433.8	23.0
11/11/2021	03:33:49	FE1_04	Still	FE1_04_23	142	-	440 530.0	5 757 411.0	440 533.3	5 757 435.8	25.1
11/11/2021	03:33:57	FE1_04	Still	FE1_04_24	143	-	440 530.0	5 757 411.0	440 533.4	5 757 439.6	28.8
11/11/2021	03:34:02	FE1_04	Video	EOL	144	-	440 530.0	5 757 411.0	440 534.3	5 757 442.5	31.8
Notes											

BSL = Below sea level

HG = Hamon grab

SOL = Start of line

DG = Day grab

NS = No sample

UTC = Coordinated Universal Time

EOL = End of line

NT = Not triggered

FA = Faunal sample A

SC = Sediment chemistry

C.2 Grab Log

					Sample	Sedimen	t Description (including stratigraphy)		
Date	Time [UTC]	Station	Sample Rep	Fix No.	Volume / depth* [L / cm]	Depth [cm]	Sediment Type	Sediment Description	Colour	Comments (fauna, smell, bioturbation, debris)
10/11/2021	01:46:05	FE2_01	FA	37	5	-	gsM	Gravelly muddy sand	Brown	Cobbles
10/11/2021	02:18:12	FE2_02	FA	38	7	-	S	Coarse sand	Yellow	Shell fragments
10/11/2021	03:00:57	FE2_03	FA	39	6	-	S	Coarse sand	Yellow	Shell fragments
10/11/2021	03:52:48	FE2_03	NS	40	-	-		-	-	Empty
10/11/2021	04:12:57	FE2_03	NS	41	-	-		-	-	Bungee broke
10/11/2021	04:38:45	FE2_03	NS	42	-	-		-	-	Triggered in water column
10/11/2021	05:00:50	FE2_03	NS	43	-	-		-	-	Triggered in water column
10/11/2021	05:19:56	FE2_03	NS	44	-	-		-	-	Washout
10/11/2021	05:36:32	FE2_03	NS	45	-	-		-	-	Triggered in water column
10/11/2021	05:39:08	FE2_03	SC	46	10	-	S	Sand	Yellow	Shell fragments
10/11/2021	07:09:26	FE2_06	NS	47	-	-		-	-	-
10/11/2021	07:48:56	FE2_04	FA	48	7	-	S	Sand	Yellow	Shell fragments
10/11/2021	08:15:26	FE2_06	FA	49	5	-	(g)mS	Slightly gravelly muddy sand	Yellow	-
10/11/2021	08:53:29	FE2_05	NS	50	1	-		-	-	Low volume
10/11/2021	09:04:48	FE2_05	NS	51	-	-		-	-	Did not trigger
10/11/2021	09:12:04	FE2_05	FA	52	6	-	S	Sand		-
10/11/2021	09:46:08	FE3_02	NS	53	-	-		-	-	Did not trigger
10/11/2021	10:15:02	FE3_02	NS	54	-	-		-	-	Did not trigger

					Sample	Sedimen	t Description (including stratigraphy)		
Date	Time [UTC]	Station	Sample Rep	Fix No.	Volume / depth* [L / cm]	Depth [cm]	Sediment Type	Sediment Description	Colour	Comments (fauna, smell, bioturbation, debris)
10/11/2021	10:24:03	FE3_02	FA	55	5	-	gS	Gravelly sand with pebbles	-	Shell fragments. 1 large cobble
10/11/2021	11:15:40	FE3_01	SC	56	7	-	gsM	Gravelly muddy sand	-	-
10/11/2021	11:45:41	FE3_01	FA	57	7	-	gsM	Gravelly muddy sand	-	-
10/11/2021	12:30:41	FE3_03	FA	58	5	-	gsM	Gravelly muddy sand	-	Did not trigger
10/11/2021	13:13:36	FE1_01	NS	59		-			-	-
10/11/2021	13:22:27	FE1_01	FA	60	8	-	(g)sM	Slightly gravelly sandy mud	-	Consolidated clay, brittle stars
10/11/2021	13:59:07	FE1_03	FA	61	7	-	gS	Slightly gravelly sand	-	Shell fragments
10/11/2021	15:03:19	FE1_05	FA	62	7	-	S	Sand	-	-
10/11/2021	15:59:43	FE1_05	SC	63	8	-	S	Sand	-	-
10/11/2021	16:33:18	FE1_04	FA	64	7	-	sG	Sandy gravel	-	Mixed sediment - cobbles and pebbles
10/11/2021	18:26:35	FE1_02	NS	65	2	-	sG	Sandy gravel	-	Stone in jaw
10/11/2021	18:34:26	FE1_02	FA	66	5	-	(g)mS	Slightly gravelly muddy sand	Brown	Encrusting Hydrozoa/Bryozoa, Actiniaria, clay lumps, brittlestars
10/11/2021	19:12:12	FE1_06	NS	67	<1	-		-	-	-
10/11/2021	19:29:53	FE1_06	FA	68	5	-	(g)s	Slightly gravelly sand	Yellow	Shell fragments, faunal tubes
10/11/2021	20:06:24	FE1_07	FA	69	4	-	S	Sand	Yellow	Shell fragments
10/11/2021	21:36:01	FE1_08	FA	75	6	-	gS	Gravelly sand	Yellow/bro wn	Shell fragments

UTC = Coordinated Universal Time

FA = Fauna sample A

* Sample depth recorded in cm for Day grab

SOL = Start of line SC = Sediment chemistry EOL = End of line NS = No sample

C.3 Video and Photographic Log

Geodetic Pa	arameters: WO	S 84, UTM Z	one 31 N [m]					
		Video C	oordinates					
Station	Point on Line	Easting [m]	Northing [m]	Length [m]	Still Nos.	Sediment Description	Fauna / Bioturbation / Debris	
	SOL	437 890.1	5 753 947.0	29	FE1_01_01 -	Sandy muddy gravel with varying proportions of cobbles and shell	Starfish (Asterias rubens), brittlestars (Ophiuroidea), scallops (Aequipecten opercularis and ?Pecten maximus), soft coral (Alcyonium digitatum), anemone (Urticina sp.), sea urchins	
	SOL	437 902.5	5 753 973.0	29	FE1_01_08	fragments	(Echinoidea including <i>Psammechinus miliaris</i>), faunal tubes (Polychaeta including <i>Spirobranchus</i> sp.), encrusting bryozoans (Bryozoa)	
FE1_01	EOL	437 902.5	5 753 973.0	- 42	FE1_01_09 -	Clay with piddock holes, sandy muddy gravel with varying	Starfish (Asterias rubens), brittlestars (Ophiuroidea), hermit crabs (Paguridae), sea urchins (Echinoidea including Psammechinus miliaris), scallops (Aequipecten opercularis and ?Pecten maximus), anemones (Actiniaria including Urticina sp.),	
	EOL	437 903.4	5 754 015.0	72	FE1_01_22	proportions of cobbles, boulders and shell fragments	soft coral (<i>Alcyonium digitatum</i>), faunal tubes (Polychaeta including <i>Spirobranchus</i> sp.), encrusting bryozoans (Bryozoa), faunal turf (Hydrozoa/Bryozoa)	
	SOL	439 422.8	5 759 561.0					
	EOL	439 430.8	5 759 641.0		EE1 02 01	Gravelly muddy sand/sandy	Starfish (Asterias rubens), soft coral (Alcyonium digitatum),	
FE1_02	440 533.6	5 757 442.0	80	FE1_02_01 - FE1_02_15	proportions of cobbles and shell fragments	encrusting bryozoans (Bryozoa), faunal turf (Hydrozoa/Bryozoa) barnacles (Sessilia)		
FE1_02	EOL 439 430		5 759 641.0	80	FE1_02_01 - FE1_02_15	muddy gravel with varying proportions of cobbles and shell	faunal tubes (Polychaeta including <i>Spirobranchus</i> sp.), encrusting bryozoans (Bryozoa), faunal turf (Hydrozoa/Bryozoa)	

Notes

UTC = Coordinated Universal Time

? = Identification is uncertain

Appendix D

Sediment Particle Size and Grab Sample Photographs

Sediment Particle Size Distribution Results D.1

Certificate of Analysis

Certificate Number	EP/22/4981	Revision Number	1
Job Number	200867		
Job Reference	RWE Five Estuaries		
Prepared For	•	Prepared By	
RWE		Adam Burtonshav Fugro GB Marine Trafalgar Wharf (U Hamilton Road Portchester Portsmouth PO6 4PX United Kingdom	Limited
			(0) 2392 205500
			ment@fugro.com
		Web: wwv	v.fugro.com

Sampling Undertaken By	FGBML	Sampling Date	26/07/2021 – 27/07/2021, 09/11/2021 – 16/11/2021									
Date of Receipt	27/07/2021, 18/11/2021	Date of Analysis	25/11/2021 – 14/01/2022									
Sample Matrix	Marine Sediments	Marine Sediments										
Method Reference	Best Practice Guidance - Partic and EUAF-FGBM-SED-TM-002 Particle Size Distribution by La 2000G Dispersion Unit – EUAF	y Sieving – EUAF-FGBM-SED-TM le Size Analysis (PSA) for Suppor based on BS 1377: Parts 1: 2016 ser Diffraction using a Malvern M -FGBM-SED-TM-006 based on N is (PSA) for Supporting Biologica	rting Biological Analysis 2016 and 2: 1990. Mastersizer 2000 and Hydro IMBAQC's Best Practice									
Test Results	Refer to pages 2-8 of 8 Refer to Excel results file for last	ser diffraction metadata.										
Laboratory Comments	Deviating Codes: None											
Authorised Signature	J. R. HA											
Name	James Hutchinson											
Position	Sediment Laboratory Manager											
Issue Date	27/01/2022											

- Further information on methods of analysis may be obtained from the above address
 Opinions and interpretations expressed herein are outside the scope of UKAS accreditation
 Test results reported relate only to those items tested
 Test results reported specifically refer to sample(s) tested as received unless otherwise stated

 **Prindicates subcontracted test

 Districted the subcontracted test

A UKAS **TESTING** LABORATORY

Registered in England: Fugro House, Hithercroft Road, Wallingford, Oxfordshire, OX10 9RB, UK Registered in England No. 1135456 | VAT No. GB 579 3459 84

EUAF-FGBM-SED-TP-001 | Version 4.0

Page 1 of 8

fugro

TEST RESULTS

Test Results: Particle Size Distribution by Dry Sieving (63000 - 1000 μ m) and Laser Diffraction (< 1000 - < 0.04 μ m) @ 0.5 Phi Intervals

Job Reference: **RWE Five Estuaries**

SAMPLE ID:	FE1_01	FE1_02	FE1_03	FE1_04	FE1_05	FE1_06	FE1_07	FE1_08	FE2_01	FE2_02	FE2_03	FE2_04	FE2_05	FE2_06	FE3_01
LAB ID:	WL039831	WL039832	WL039833	WL039834	WL039835	WL039836	WL039837	WL039838	WL039839	WL039840	WL039841	WL039842	WL039843	WL039844	WL039845
Aperture [µm]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]
63000	0100011	0.00	27.50	7.00000	POC (A) P	0.00	0.00	0.00	19000	0.00	0.00	0.00	0.00	0.00	0.00
45000		0.00				0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
31500	0.000	25.79			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22400	0.00	15.28			0.00	0.00	0.00	8.90	0.00	0.00	0.00	0.00	0.00	11.31	0.00
16000		0.00		200.000		6.76	3.87	0.00		0.00	0.00	0.00	0.00	8.67	6.42
11200		4.07			0.87	2.99	9.27	2.72		0.15	0.00	0.00	0.00	17.93	2.79
8000		4.91		200000	0.36	5.42	6.87	3.64	16.21	0.00	0.62	0.20	0.00	5.21	4.37
5600		2.85	2.16	3.42	2.11	4.03	5.60	4.55	5.28	0.14	2.23	0.12	0.00	5.10	7.30
4000		2.36	2.57	1.79	1.63	2.95	3.31	2.59	5.01	0.60	1.98	0.24	0.09	4.45	3.16
2800		2.32	4.35	1.06	1.34	1.58	2.92	2.88		0.72	2.35	0.42	0.39	4.10	2.21
2000	1000000	2.02		10,0000	2.20	1.23	1.92	2.36	3.40	1.46	2.98	0.65	0.53	2.45	1.56
1400		2.08			2.16	1.04	1.43	2.05	1.86	2.54	2.99	1.29	1.11	1.61	1.30
1000	3.02	2.28	5.44	0.74	2.95	0.85	0.88	2.06	1.07	4.46	2.82	3.33	2.02	1.05	1.81
707.00		10.02				5.33	7.04	16.17		23.73	15.32		9.79	3.74	15.59
	10.0000	10.69	31.44	10/2003 at a	35.11	17.88	23.94	25.78		35.75	37.64	36.71	33.64	10.96	23.63
353.60	V 12 March 1	6.67	2000	15 TO STATE OF THE	Pro-	25.96	24.90	100000000000000000000000000000000000000		24.57	26.75	29.19	38.26	12.51	17.23
250.00	3.47	1.95	17/201	8.32	5.74	17.83	7.74	6.22	4.64	5.81	4.30	8.11	13.46	5.26	5.10
176.80	20000000	0.07	70.5.5	200.000	0.08	4.75	0.31	0.24		0.07	0.01	0.22	0.71	0.51	0.23
125.00		0.01				0.11	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
88.39	ACE:01	0.36	ACDOMY.	0.000.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.21
63.00		0.48				0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.18	0.64
44.20	0.000	0.36	0.00	0.00	0.00	0.00	0.00	0.00	0.38	0.00	0.00	0.00	0.00	0.31	0.48
31.30		0.26			0.00	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.19	0.24
22.10	4.14	0.32	2000	1000000	0.00	0.00	0.00	0.00	1000000	0.00	0.00	0.00	0.00	0.14	0.27
15.60		0.45	0.00	0.02	0.00	0.00	0.00	0.00	0.31	0.00	0.00	0.00	0.00	0.20	0.42
11.00		0.58	23.5.5	CASSTER STATE OF THE STATE OF T	202.20	0.16	0.00	0.00	720.00	0.00	0.00	0.00	0.00	0.30	0.52
7.80	4.30	0.68	0.00	0.06	0.00	0.23	0.00	0.00	0.55	0.00	0.00	0.00	0.00	0.40	0.59
	100000	0.75	10000	2/2/2/2/2	LLC STOCK	0.24	0.00	0.00	0.68	0.00	0.00	0.00	0.00	0.53	0.69
3.90		0.71	-			0.23	0.00	0.00	0.75	0.00	0.00	0.00	0.00	0.61	0.75
2.75	4.20	0.60	0.00	0.05	0.00	0.20	0.00	0.00	0.73	0.00	0.00	0.00	0.00	0.64	0.73
1.95		0.41	0.00	0.04	0.00	0.16	0.00	0.00	0.58	0.00	0.00	0.00	0.00	0.54	0.59
1.38	55/95/55	0.26		0.0000	10000.000	0.06	0.00	0.00		0.00	0.00	0.00	0.00	0.42	0.43
0.98	1.84	0.17	0.0000	7000V	24/0/20	0.00	0.00	0.00	0.28	0.00	0.00	0.00	0.00	0.30	0.31
0.69	1.51	0.13	0.00	0.00	0.00	0.00	0.00	0.00	0.21	0.00	0.00	0.00	0.00	0.22	0.24
0.49	1.05	0.09	10000	7.7.2.2	0.00	0.00	0.00	0.00	0.14	0.00	0.00	0.00	0.00	0.14	0.16
0.34	00000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.03	0.00	0.00	0.00	0.00	0.02	0.00
0.24	A3390,00	0.00	SCORUM C	200000	0.00	0.00	0.00	0.00	10000000	0.00	0.00	0.00	0.00	0.00	0.00
0.17		0.00			00000	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
0.12	00000	0.00	10.000		0.00	0.00	0.00	0.00	- Control of the Cont	0.00	0.00	0.00	0.00	0.00	0.00
0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.06		0.00	0.000	2000	22222	0.00	0.00	0.00	1000000	0.00	0.00	0.00	0.00	0.00	0.00
0.04		0.00	0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
< 0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL:	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00

EUAF-FGBM-SED-TP-070 | Version 1.0

EP/22/4981 Rev1

Page 4 of 8

Tugro

TEST RESULTS

Test Results: Particle Size Distribution by Dry Sieving (63000 - 1000 μm) and Laser Diffraction (< 1000 - < 0.04 μm) @ 0.5 Phi Intervals

Job Number: 200867

Job Reference: RWE Five Estuaries

SAMPLE ID:	FE3_02	FE3_03	FE4_01	FE4_02	FE4_03	FE4_04	FE4_05	FE4_06	FE4_07	FE4_08	FE5_01	FE5_02	FE5_03	FE5_04	FE5_05
LAB ID:	WL039846	WL039847	WL039848	WL039849	WL039850	WL039851	WL039852	WL039853	WL039854	WL039855	WL039856	WL039857	WL039858	WL039859	WL039860
Aperture [µm]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]
63000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
45000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
31500	33.81	0.00	30.87	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
22400	8.97	21.98	0.00	0.00	28.01	14.35	42.35	0.00	38.71	0.00	0.00	0.00	0.00	0.00	18.03
16000	11.91	13.68	3.90	5.83	0.00	6.66	3.08	5.81	0.00	0.00	10.70	0.00	0.00	0.00	23.05
11200	6.63	2.96	4.23	5.80	8.35	0.00	6.24	0.00	2.40	2.81	2.54	10.24	2.99	4.22	1.21
8000	5.52	2.81	5.13	7.43	2.30	2.23	1.75	1.77	3.78	1.56	6.94	0.84	4.95	7.01	6.01
5600	2.75	5.65	3.86	2.33	3.26	2.98	1.16	3.72	5.92	5.66	3.88	1.76	5.10	10.72	3.92
4000	1.79	3.57	1.95	2.59	2.13	2.58	1.58	5.96	3.05	2.22	3.92	2.14	2.73	2.40	2.16
2800	1.22	2.15	1.54	3.68	1.94	1.57	1.64	6.56	1.71	2.83	1.69	1.17	1.66	2.01	2.66
2000	1.34	1.19	1.19	3.11	1.62	1.80	1.76	6.88	1.84	3.36	1.89	1.01	1.41	2.51	2.90
1400	1.14	0.83	1.03	3.53	1.95	2.37	2.06	7.45	1.76	4.51	1.82	0.53	1.12	2.33	3.05
1000	1.09	0.90	1.11	4.55	2.29	3.15	2.41	8.92	1.39	5.78	1.84	0.49	1.32	2.63	2.84
707.00	6.21	12.27	2.53	10.04	5.26	12.27	8.15	22.82	3.95	11.41	5.05	1.20	5.22	7.60	6.59
500.00	9.38	15.17	3.45	11.51	5.47	14.47	8.61	20.63	6.97	12.75	7.06	2.03	7.38	12.42	7.32
353.60	6.57	9.94	3.80	10.90	4.32	11.40	6.24	8.66	8.34	9.13	7.17	2.52	7.42	12.55	5.55
250.00	1.66	2.89	3.20	8.16	2.60	5.40	2.90	0.82	6.28	3.67	5.51	2.28	5.29	7.38	2.62
176.80	0.01	0.14	1.94	4.23	1.18	1.14	0.75	0.00	2.57	0.51	4.01	1.52	2.80	2.35	0.69
125.00	0.00	0.00	0.91	1,14	0.49	0.02	0.15	0.00	0.31	0.01	3.75	0.97	1.45	0.87	0.37
88.39	0.00	0.28	0.55	0.05	0.45	0.21	0.26	0.00	0.00	0.47	3.72	0.98	1,17	1.47	0.73
63.00	0.00	0.42	0.63	0.29	0.75	0.71	0.37	0.00	0.06	1.08	2.88	1.45	1.33	1.95	0.88
44.20	0.00	0.23	0.93	0.73	1.24	0.96	0.39	0.00	0.37	1.51	1.91	2.36	1.88	1.74	0.79
31.30	0.00	0.10	1.25	0.85	1.62	1.00	0.40	0.00	0.47	1.71	1.34	3.24	2.62	1.19	0.62
22.10	0.00	0.14	1.63	0.88	1.96	1.14	0.49	0.00	0.54	1.96	1.49	4.24	3.50	1.04	0.60
15.60	0.00	0.23	1.98	0.98	2.20	1.30	0.60	0.00	0.69	2.21	1.92	5.32	4.02	1.20	0.69
11.00	0.00	0.29	2.25	1.16	2.38	1.45	0.69	0.00	0.89	2.50	2.36	6.66	4.09	1.45	0.79
7.80	0.00	0.33	2.46	1.34	2.50	1.54	0.78	0.00	1.04	2.82	2.70	7.90	3.96	1.67	0.88
5.50	0.00	0.38	2.83	1.56	2.72	1.67	0.89	0.00	1.20	3.32	3.03	8.92	4.18	1.95	0.98
3.90	0.00	0.40	3.07	1.63	2.77	1.69	0.95	0.00	1.26	3.59	2.99	8.60	4.38	2.07	0.98
2.75	0.00	0.37	3.09	1.56	2.65	1.60	0.92	0.00	1.22	3.54	2.64	7.35	4.41	2.01	0.90
1.95	0.00	0.28	2.60	1.26	2.20	1.31	0.76	0.00	1.01	2.91	1.93	5.25	3.80	1.64	0.69
1.38	0.00	0.19	2.00	0.95	1.72	1.00	0.58	0.00	0.76	2.18	1.29	3.50	3.04	1.23	0.50
0.98	0.00	0.13	100.000	0.71	1.34	0.76	0.42	0.00	0.57	1.57	0.86	2.36	2.38	0.91	0.37
0.69	0.00	0.08		0.59	1.13	0.63	0.34	0.00	0.46	1.23	0.65	1.78	2.04	0.74	0.31
0.49	0.00	0.00		0.43	0.81	0.45	0.23	0.00	0.33	0.84	0.42	1.13	1.52	0.53	0.22
0.34	0.00	0.00	0.45	0.20	0.38	0.20	0.10	0.00	0.14	0.34	0.10	0.27	0.81	0.23	0.09
0.24	0.00	0.00	CONTROL CONTRO	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.06	0.00	0.00
0.17	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
< 0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL:	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00

Tugro

TEST RESULTS

Test Results: Particle Size Distribution by Dry Sieving (63000 - 1000 μm) and Laser Diffraction (< 1000 - < 0.04 μm) @ 0.5 Phi Intervals

Job Number: 200867

Job Reference: RWE Five Estuaries

SAMPLE ID:	FE5_06	FE5_07	FE5_08	FE5_09	FE5_10	FE6_01	FE6_02	FE6_04	FE6_06	FE6_07	FE6_08	FE6_09	FE6_10	FE6_11	FE7b_02
LAB ID:	WL039861	WL039862	WL039863	WL039864	WL039865	WL039866	WL039867	WL039868	WL039869	WL039870	WL039871	WL039872	WL039873	WL039874	WL039875
Aperture [µm]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]	Fractional [%]
63000	0100011	0.00	27.50	7.00000	POC (A) P	0.00	0.00	0.00	19000	0.00	0.00	0.00	0.00	0.00	0.00
45000		0.00				0.00	43.36	0.00		0.00	0.00	0.00	0.00	0.00	0.00
31500	0.000	0.00	0.00	100000	20,710,71	0.00	0.00	0.00	0.00	0.00	0.00	0.00	34.88	0.00	0.00
22400	0.00	0.00	0.00	0.00	0.00	20.49	6.63	0.00	0.00	0.00	0.00	0.00	8.60	0.00	0.00
16000	4.91	19.59	0.00	0.00	0.00	11.14	13.65	14.39	0.00	0.00	0.00	9.95	8.14	0.00	1.38
11200		3.10			2.23	18.34	0.87	18.73		0.00	0.00	10.71	6.29	8.44	6.26
8000	5.00	13.88	7.31	0.00	6.69	8.50	3.82	8.20	0.16	1.90	0.14	10.21	2.63	2.34	4.50
5600	4.80	6.33	5.69	1.39	2.51	6.02	2.80	6.90	1.28	3.39	0.44	3.29	2.07	4.86	1.99
4000	2.11	1.82	3.38	2.00.000	3.05	2.38	1.76	4.51	4.84	2.94	0.41	1.62	1.22	3.86	3.86
2800		2.39	2.94		2.48	1.40	1.97	3.65	7.18	2.64	0.60	1.77	1.49	2.90	2.49
2000	1.37	1.92	2.04	1.69	1.86	1.14	1.55	2.58	14.36	3.66	1.11	1.36	0.90	3.14	2.47
1400		1.75	1.72			0.89	1.38	2.22	17.07	5.89	4.70	1.37	0.78	3.70	2.60
1000	1.15	1.77	1.47	1.90	2.28	0.86	1.36	2.42	20.73	6.86	22.13	1.83	0.71	5.58	2.31
707.00		5,44		3.61	110000	2.30	2.78	7.03	19.23	19.07	31.91	3.68	1.53	14.68	3.27
500.00	9.53	7.42		3.55		2.59	3.23	8.89	10.84	23.12	23.08	7.80	2.11	15.52	3.77
353.60	A CONTRACTOR OF	7.78		3.07	0.000000	2.50	2.73	8.16	2.55	19.04	10.70	13.69	3.87	12.30	3.33
250.00	12.54	5.89	1.25	2.38	12.87	2.62	1.80	5.39	0.05	9.54	2.97	16.27	6.49	7.67	2.28
176.80	50500	2.88	0.82	200	6.12	3.14	1.33	2.60	0.12	1.95	0.71	11.45	7.69	4.34	1.74
125.00		0.68	5000	0.72	A. C. C.	3.52	1.49	1.09		0.00	0.61	3.87	5.90	2.76	2.77
88.39	0.00	0.04	COURT .	Process 1	0.00	3.13	1.65	0.62	0.40	0.00	0.46	0.18	2.60	1.89	4.97
63.00		0.33				2.09	1.32	0.47	0.02	0.00	0.04	0.00	0.40	1.07	6.44
44.20		0.72	1.98	1.86	0.78	1.18	0.80	0.32	0.00	0.00	0.00	0.00	0.00	0.51	6.63
31.30		0.87		3.02	1.14	0.62	0.37	0.17		0.00	0.00	0.00	0.13	0.28	5.12
22.10	1.29	0.99	3.50	4.19	1.24	0.50	0.26	0.12		0.00	0.00	0.00	0.27	0.31	3.90
15.60	1.49	1.14	4.13	5.08	1.41	0.51	0.30	0.14	0.06	0.00	0.00	0.00	0.18	0.37	3.33
11.00		1.33	000000	5.76	100000	0.52	0.33	0.17	0.07	0.00	0.00	0.05	0.10	0.40	3.30
7.80	2.01	1.52	5.85	6.36	2.01	0.52	0.35	0.19	80.0	0.00	0.00	0.17	0.11	0.42	3.39
5.50	1000	1.75	10000	100000	HISCHOOL STATE OF THE PARTY OF	0.56	0.38	0.22	0.09	0.00	0.00	0.21	0.16	0.48	3.58
3.90	2.37	1.84	7.35			0.58	0.39	0.23		0.00	0.00	0.20	0.19	0.52	3.50
2.75	2.26	1.79	6.88	7.85	2.48	0.56	0.38	0.21	0.10	0.00	0.00	0.16	0.18	0.51	3.20
1.95		1.49		6.54		0.45	0.31	0.17		0.00	0.00	0.12	0.14	0.42	2.50
1.38		1.15	100000	4.99	73/7 6/4/2/	0.34	0.23	0.12	1000000	0.00	0.00	0.02	0.11	0.31	1.81
0.98	(13.77 (OL)	0.88	155.500	3.72	/0000101	0.25	0.17	0.08	SERVICE CO.	0.00	0.00	0.00	0.08	0.22	1.31
0.69		0.74				0.20	0.13	0.02		0.00	0.00	0.00	0.04	0.17	1.05
0.49	0.000000	0.54	0.1.00		E-05/11/1	0.14	0.09	0.00		0.00	0.00	0.00	0.00	0.03	0.71
0.34	2	0.25	0.55		0.21	0.03	0.02	0.00		0.00	0.00	0.00	0.00	0.00	0.23
0.24	A100,T1	0.00	SCORUM C	201,0000	0.00	0.00	0.00	0.00	10000000	0.00	0.00	0.00	0.00	0.00	0.00
0.17		0.00			00000	0.00	0.00	0.00		0.00	0.00	0.00	0.00	0.00	0.00
0.12	00000	0.00	10.000		0.00	0.00	0.00	0.00	- Control of the Cont	0.00	0.00	0.00	0.00	0.00	0.00
0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.06		0.00	0.000	2000	22/24/2	0.00	0.00	0.00	1000000	0.00	0.00	0.00	0.00	0.00	0.00
0.04		0.00	0.00			0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
< 0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL:	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00

EUAF-FGBM-SED-TP-070 | Version 1.0

EP/22/4981 Rev1 Page 6 of 8

TEST RESULTS

Test Results: Particle Size Distribution by Dry Sieving (63000 - 1000 µm) and Laser Diffraction (< 1000 - < 0.04 µm) @ 0.5 Phi Intervals

Job Reference: RWE Five Estuaries

SAMPLE ID:	FE7b_04	FE7b_05	FE7b_06	FE7c_01	FE7c_02	
LAB ID:	WL039876	WL039877	WL039878	WL039879	WL039880	
Aperture [µm]	Fractional [%]					
53000	0.00	0.00	0.00	0.00	0.00	
15000	0.00	0.00	0.00	0.00	0.00	
1500	0.00	0.00	0.00	57.52	0.00	
22400	0.00	27.02	0.00	17.56	0.00	
16000	0.00	0.00	0.00	0.00	22.51	
11200	0.00	3.42	0.00	2.52	18.37	
8000	0.00	4.70	2.83	1.54	4.05	
5600	0.69	3.28	3.20	1.08	3.68	
1000	1.21	2.40	2.61	0.78	2.90	
2800	0.40	1.24	1.94	0.65	1.24	
2000	0.50	1.36	1.15	0.49	1.36	
1400	0.41	1.03	1.48	0.40	1.12	
1000	0.53	0.90	1.91	0.44	1.22	
707.00	0.93	2.06	4.75	1.28	2.69	
600.00	1.39	3.20	6.43	1.96	3.56	
353.60	1.41	3.56	6.58	1.97	3.46	
250.00	1.09	2.86	5.23	1.32	2.57	
76.80	0.81	1.93	3.73	0.76	2.02	
25.00	0.98	1.88	3.54	0.85	2.64	
8.39	1.94	2.85	4.62	1.27	3.74	
53.00	3.44	3.82	5.52	1.37	3.92	
14.20	5.29	4.31	5.82	1.11	3.22	
31.30	6.23	3.74	4.91	0.66	2.00	
22.10	6.75	3.13	4.12	0.44	1.37	
15.60	7.12	2.74	3.62	0.41	1.25	
11.00	7.87	2.64	3.48	0.45	1.34	
7.80	8.71	2.65	3.45	0.48	1.42	
5.50	9.53	2.75	3.60	0.51	1.53	
3.90	9.12	2.62	3.51	0.51	1.53	
2.75	7.84	2.32	3.24	0.47	1,45	
1.95	5.66	1.77	2.59	0.38	1.17	
1.38	3.80	1.28	1.96	0.28	0.88	
0.98	2.60	0.96	1.52	0.21	0.67	
0.69	2.03	0.81	1.31	0.17	0.56	
0.49	1.33	0.57	0.95	0.12	0.40	
).34	0.37	0.21	0.39	0.04	0.16	
).24	0.00	0.00	0.00	0.00	0.00	
0.17	0.00	0.00	0.00	0.00	0.00	
0.12	0.00	0.00	0.00	0.00	0.00	
0.09	0.00	0.00	0.00	0.00	0.00	
0.06	0.00	0.00	0.00	0.00	0.00	
0.04	0.00	0.00	0.00	0.00	0.00	
< 0.04	0.00	0.00	0.00	0.00	0.00	
TOTAL:	100.00	100.00	100.00	100.00	100.00	

EUAF-FGBM-SED-TP-070 | Version 1.0

EP/22/4981 Rev1

Page 7 of 8

TEST RESULTS

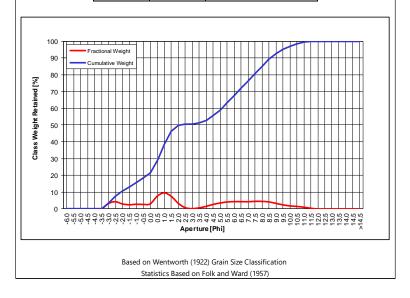
Test Results: Particle Size Distribution by Dry Sieving (63000 - 1000 μ m) and Laser Diffraction (< 1000 - < 0.04 μ m) @ 0.5 Phi Intervals

Job Reference: **RWE Five Estuaries**

SAMPLE ID:	FE7c_03	FE7c_04	FE7d_01	FE7d_03	FE7e_01	FE7e_02	FE7e_03	FE7f_01	FE7g_01	FE7g_02	FE7g_03
LAB ID:	WL039881	WL039882	WL039883	WL039884	WL039885	WL039886	WL039887	WL039888	WL039889	WL039890	WL039891
Aperture [µm]	Fractional [%]										
63000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
45000	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
31500	0.00	0.00	0.00	19.93	0.00	0.00	0.00	0.00	29.82	0.00	0.00
22400	22.03	0.00	23.92	32.04	12.55	0.00	37.03	19.27	0.00	0.00	0.00
16000	12.07	0.00	15.00	8.44	28.37	0.00	0.00	9.14	6.52	0.00	0.00
11200	9.16	0.00	2.43	4.04	12.23	0.00	3.60	15.48	10.08	0.00	0.00
8000	4.65	0.00	2.31	1.78	3.12	0.00	4.80	6.34	6.42	0.00	0.00
5600	4.78	0.00	3.46	2.21	0.62	0.00	2.80	3.05	6.94	0.00	0.19
4000	2.68	0.00	2.21	1.65	1.34	0.00	1.28	1.48	3.92	0.00	0.18
2800	2.14	0.04	1.53	1.14	1.34	0.02	1.74	0.80	2.33	0.08	0.01
2000	1.70	0.03	1.06	1.16	1.50	0.05	0.73	0.42	1.99	0.09	0.06
1400	1.39	0.03	1.00	1.26	1.18	0.03	0.58	0.15	1.83	0.20	0.07
1000	1.37	0.05	0.95	1.47	0.88	0.07	0.61	0.09	2.16	0.34	0.07
707.00	3.12	0.14	1.88	4.56	1.57	0.32	1.39	0.00	5.13	2.05	0.21
500.00	3.96	0.09	2.22	6.58	2.40	0.36	4.61	0.58	6.24	7.78	5.05
353.60	3.62	0.01	2.20	6.24	3.33	1.34	8.89	5.54	5.94	14.05	13.86
250.00	2.52	0.28	2.29	3.64	3.94	4.21	10.72	13.85	4.48	15.61	18.94
176.80	1.92	4.22	3.04	1.09	4.06	8.44	8.18	15.02	2.66	11.24	15.44
125.00	2.44	11.77	4.26	0.20	3.94	11.54	3.85	7.28	1.29	5.92	7.86
88.39	3.25	17.65	4.93	0.42	3.56	11.38	1.12	1.07	0.60	3.83	3.08
63.00	3.15	16.42	4.28	0.60	2.72	8.49	0.59	0.00	0.34	4.00	2.20
44.20	2.40	10.88	3.09	0.44	1.85	5.96	0.91	330000	0.23	4.27	2.81
31.30	1.42	4.88	1.87	0.16	1.09	4.38	0.93	0.00	0.14	3.43	2.88
22.10	1.01	2.85	1.46	0.07	0.82	4.36	0.71	0.00	0.09	2.81	2.86
15.60	0.99	3.27	1.52	0.10	0.81	4.87	0.56		0.09	2.82	3.08
11.00	1.07	4.09	1.70	0.14	0.86	5.44	0.59	1000000	0.11	3.26	3.47
7.80	1.12	4.37	1.83	0.15	0.90	5.71	0.68	0.07	0.13	3.58	3.64
5.50	1.18	4.41	1.97	0.14	0.96	5.81	0.75	100.000	0.14	3.68	3.60
3.90	1.17	4.03	1.92	0.12	0.96	5.20	0.70	0.13	0.14	3.28	3.14
2.75	1.08	3.42	1.73	0.10	0.89	4.21	0.58	0.09	0.11	2.66	2.53
1.95	0.85	2.47	1.32	0.07	0.70	2.87	0.41		0.08	1.83	1.76
1.38	0.62	1.67	0.93	0.05	0.52	1.84	0.27	0.00	0.04	1.19	1.15
0.98	0.45	1.16	0.66	0.00	0.38	1.25	0.18		0.00		0.77
0.69	0.37	0.95	0.54	0.00	0.31	1.02	0.13	0.00	0.00	0.65	0.60
0.49	0.25	0.64	0.37	0.00	0.22	0.69	0.05	0.00	0.00	0.43	0.39
0.34	0.08	0.15	0.11	0.00	0.06	0.16	0.00		0.00	0.10	0.08
0.24	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.17	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.12	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.09	0.00	0.00	0.00	0.00	0.00	0.00	0.00		0.00	0.00	0.00
0.06	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
< 0.04	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00	0.00
TOTAL:	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00	100.00

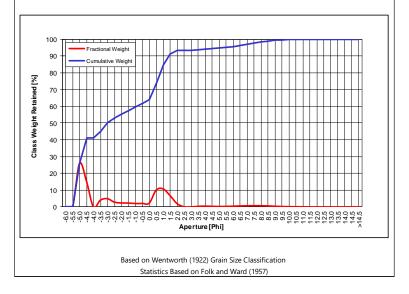
EUAF-FGBM-SED-TP-070 | Version 1.0

EP/22/4981 Rev1

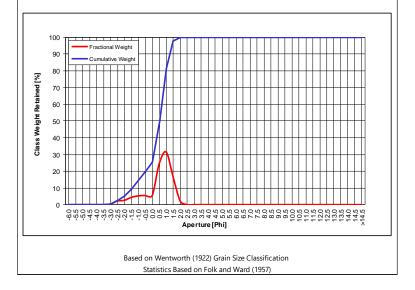

Page 8 of 8

D.2 Subtidal Grab Sample Particle Size Distribution

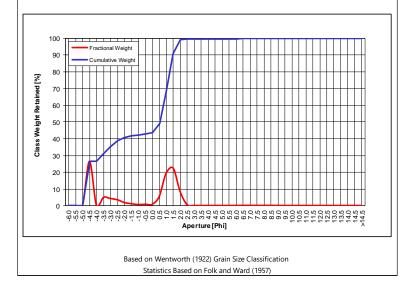
Aperture [µm]	Aperture [Phi]	Fractional [%]	Cumulative [%]
63000	-6.0	0.00	0.00
45000	-5.5	0.00	0.00
31500	-5.0	0.00	0.00
22400	-4.5	0.00	0.00
16000	-4.0	0.00	0.00
11200	-3.5	0.00	0.00
8000	-3.0	3.21	3.21
5600	-2.5	4.31	7.52
4000	-2.0	2.98	10.50
2800	-1.5	2.50	13.00
2000	-1.0	2.80	15.80
1400	-0.5	2.69	18.49
1000	0.0	3.02	21.51
707.00	0.5	7.57	29.08
500.00	1.0	9.58	38.66
353.60	1.5	7.58	46.24
250.00	2.0	3.47	49.71
176.80	2.5	0.77	50.48
125.00	3.0	0.20	50.68
88.39	3.5	0.64	51.32
63.00	4.0	1.52	52.84
44.20	4.5	2.66	55.50
31.30	5.0	3.52	59.02
22.10	5.5	4.14	63.16
15.60	6.0	4.35	67.50
11.00	6.5	4.35	71.85
7.80	7.0	4.30	76.15
5.50	7.5	4.51	80.66
3.90	8.0	4.49	85.15
2.75	8.5	4.20	89.35
1.95	9.0	3.34	92.69
1.38	9.5	2.47	95.16
0.98	10.0	1.84	97.00
0.69	10.5	1.51	98.51
0.49	11.0	1.05	99.57
0.34	11.5	0.43	100.00
0.24	12.0	0.00	100.00
0.17	12.5	0.00	100.00
0.12	13.0	0.00	100.00
0.09	13.5	0.00	100.00
0.06	14.0	0.00	100.00
0.04	14.5	0.00	100.00
< 0.04	>14.5	0.00	100.00
To	tal	100.00	100.00


Sorting	4.07	Extremely Poorly Sorted
Skewness	0.24	Fine Skewed
Kurtosis	0.76	Platykurtic
Mean [µm]	122.01	Very Fine Sand
Mean [phi]	3.03	very rifle Safid
Median [µm]	219.08	Fine Sand
Median [phi]	2.19	Tille Salid
Gravel [%]	15.80	
Sand [%]	37.04	Gravelly Mud
Mud [%]	47.16	

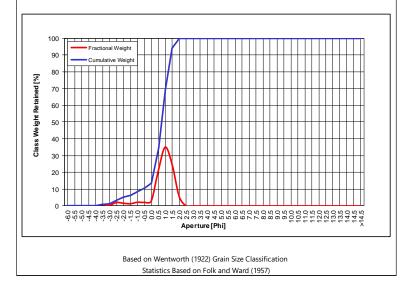
Aperture [µm]	Aperture [Phi]	Fractional [%]	Cumulative [%]
63000	-6.0	0.00	0.00
45000	45000 -5.5		0.00
31500	-5.0	25.79	25.79
22400	-4.5	15.28	41.07
16000	-4.0	0.00	41.07
11200	-3.5	4.07	45.13
8000	-3.0	4.91	50.04
5600	-2.5	2.85	52.90
4000	-2.0	2.36	55.26
2800	-1.5	2.32	57.58
2000	-1.0	2.02	59.61
1400	-0.5	2.08	61.68
1000	0.0	2.28	63.96
707.00	0.5	10.02	73.98
500.00	1.0	10.69	84.67
353.60	1.5	6.67	91.35
250.00	2.0	1.95	93.30
176.80	2.5	0.07	93.37
125.00	3.0	0.01	93.39
88.39	3.5	0.36	93.74
63.00	4.0	0.48	94.22
44.20	4.5	0.36	94.59
31.30	5.0	0.26	94.85
22.10	5.5	0.32	95.17
15.60	6.0	0.45	95.62
11.00	6.5	0.58	96.20
7.80	7.0	0.68	96.88
5.50	7.5	0.75	97.63
3.90	8.0	0.71	98.34
2.75	8.5	0.60	98.94
1.95	9.0	0.41	99.35
1.38	9.5	0.26	99.61
0.98	10.0	0.17	99.78
0.69	10.5	0.13	99.91
0.49	11.0	0.09	100.00
0.34	11.5	0.00	100.00
0.24	12.0	0.00	100.00
0.17	12.5	0.00	100.00
0.12	13.0	0.00	100.00
0.09	13.5	0.00	100.00
0.06	14.0	0.00	100.00
0.04	14.5	0.00	100.00
< 0.04	>14.5	0.00	100.00
То	tal	100.00	100.00


Sorting	3.15	Very Poorly Sorted		
Skewness	0.42	Very Fine Skewed		
Kurtosis	0.79	Platykurtic		
Mean [µm]	5288.50	Pebble		
Mean [phi]	-2.40	rebble		
Median [µm]	8024.40	Pebble		
Median [phi]	-3.00	i ebble		
Gravel [%]	59.61			
Sand [%]	34.62	Muddy Sandy Gravel		
Mud [%]	5.78			

Aperture [µm]	Aperture [Phi]	Fractional [%]	Cumulative [%]
63000	-6.0	0.00	0.00
45000	-5.5	0.00	0.00
31500	-5.0	0.00	0.00
22400	-4.5	0.00	0.00
16000	-4.0	0.00	0.00
11200	-3.5	0.00	0.00
8000	-3.0	0.30	0.30
5600	-2.5	2.16	2.46
4000	-2.0	2.57	5.04
2800	-1.5	4.35	9.38
2000	-1.0	5.21	14.60
1400	-0.5	5.44	20.03
1000	0.0	5.44	25.47
707.00	0.5	24.45	49.92
500.00	1.0	31.44	81.36
353.60	1.5	16.42	97.78
250.00	2.0	2.22	100.00
176.80	2.5	0.00	100.00
125.00	3.0	0.00	100.00
88.39	3.5	0.00	100.00
63.00	4.0	0.00	100.00
44.20	4.5	0.00	100.00
31.30	5.0	0.00	100.00
22.10	5.5	0.00	100.00
15.60	6.0	0.00	100.00
11.00	6.5	0.00	100.00
7.80	7.0	0.00	100.00
5.50	7.5	0.00	100.00
3.90	8.0	0.00	100.00
2.75	8.5	0.00	100.00
1.95	9.0	0.00	100.00
1.38	9.5	0.00	100.00
0.98	10.0	0.00	100.00
0.69	10.5	0.00	100.00
0.49	11.0	0.00	100.00
0.34	11.5	0.00	100.00
0.24	12.0	0.00	100.00
0.17	12.5	0.00	100.00
0.12	13.0	0.00	100.00
0.09	13.5	0.00	100.00
0.06	14.0	0.00	100.00
0.04	14.5	0.00	100.00
< 0.04	>14.5	0.00	100.00
То	tal	100.00	100.00

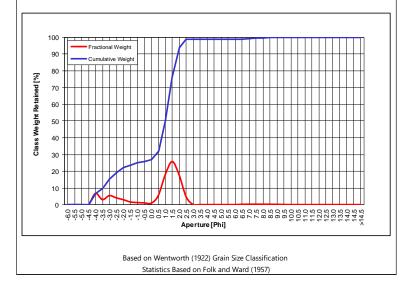

Sorting	1.01	Poorly Sorted		
Skewness	-0.44	Very Coarse Skewed		
Kurtosis	1.49	Leptokurtic		
Mean [µm]	847.78	Coarse Sand		
Mean [phi]	0.24	Coarse Sario		
Median [µm]	706.37	Coarse Sand		
Median [phi]	0.50	Coarse Sario		
Gravel [%]	14.60			
Sand [%]	85.40	Gravelly Sand		
Mud [%]	0.00			

Aperture [µm]	Aperture [Phi]	Fractional [%]	Cumulative [%]
63000	-6.0	0.00	0.00
45000	-5.5	0.00	0.00
31500	-5.0	0.00	0.00
22400	-4.5	26.39	26.39
16000	-4.0	0.00	26.39
11200	-3.5	4.85	31.24
8000	-3.0	4.17	35.42
5600	-2.5	3.42	38.84
4000	-2.0	1.79	40.63
2800	-1.5	1.06	41.69
2000	-1.0	0.60	42.29
1400	-0.5	0.74	43.03
1000	0.0	0.74	43.77
707.00	0.5	5.39	49.16
500.00	1.0	19.36	68.52
353.60	1.5	22.33	90.85
250.00	2.0	8.32	99.18
176.80	2.5	0.49	99.66
125.00	3.0	0.00	99.66
88.39	3.5	0.00	99.66
63.00	4.0	0.00	99.66
44.20	4.5	0.00	99.66
31.30	5.0	0.00	99.66
22.10	5.5	0.00	99.66
15.60	6.0	0.02	99.68
11.00	6.5	0.06	99.74
7.80	7.0	0.06	99.80
5.50	7.5	0.06	99.86
3.90	8.0	0.05	99.91
2.75	8.5	0.05	99.96
1.95	9.0	0.04	100.00
1.38	9.5	0.00	100.00
0.98	10.0	0.00	100.00
0.69	10.5	0.00	100.00
0.49	11.0	0.00	100.00
0.34	11.5	0.00	100.00
0.24	12.0	0.00	100.00
0.17	12.5	0.00	100.00
0.12	13.0	0.00	100.00
0.09	13.5	0.00	100.00
0.06	14.0	0.00	100.00
0.04	14.5	0.00	100.00
< 0.04	>14.5	0.00	100.00
To	tal	100.00	100.00


Sorting	2.51	Very Poorly Sorted
Skewness	-0.68	Very Coarse Skewed
Kurtosis	0.48	Very Platykurtic
Mean [µm]	1914.48	Very Coarse Sand
Mean [phi]	-0.94	very Coarse Sario
Median [µm]	696.47	Coarse Sand
Median [phi]	0.52	Course Suria
Gravel [%]	42.29	
Sand [%]	57.38	Sandy Gravel
Mud [%]	0.34	

Aperture [µm]	Aperture [Phi]	Fractional [%]	Cumulative [%]
63000	-6.0	0.00	0.00
45000	-5.5	0.00	0.00
31500	-5.0	0.00	0.00
22400	-4.5	0.00	0.00
16000	-4.0	0.00	0.00
11200	-3.5	0.87	0.87
8000	-3.0	0.36	1.23
5600	-2.5	2.11	3.34
4000	-2.0	1.63	4.97
2800	-1.5	1.34	6.31
2000	-1.0	2.20	8.51
1400	-0.5	2.16	10.67
1000	0.0	2.95	13.62
707.00	0.5	20.75	34.37
500.00	1.0	35.11	69.49
353.60	1.5	24.70	94.19
250.00	2.0	5.74	99.92
176.80	2.5	0.08	100.00
125.00	3.0	0.00	100.00
88.39	3.5	0.00	100.00
63.00	4.0	0.00	100.00
44.20	4.5	0.00	100.00
31.30	5.0	0.00	100.00
22.10	5.5	0.00	100.00
15.60	6.0	0.00	100.00
11.00	6.5	0.00	100.00
7.80	7.0	0.00	100.00
5.50	7.5	0.00	100.00
3.90	8.0	0.00	100.00
2.75	8.5	0.00	100.00
1.95	9.0	0.00	100.00
1.38	9.5	0.00	100.00
0.98	10.0	0.00	100.00
0.69	10.5	0.00	100.00
0.49	11.0	0.00	100.00
0.34	11.5	0.00	100.00
0.24	12.0	0.00	100.00
0.17	12.5	0.00	100.00
0.12	13.0	0.00	100.00
0.09	13.5	0.00	100.00
0.06	14.0	0.00	100.00
0.04	14.5	0.00	100.00
< 0.04	>14.5	0.00	100.00
То	otal	100.00	100.00

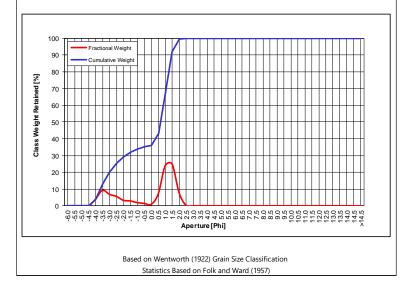
Sorting	0.85	Moderately Sorted
Skewness	-0.30	Coarse Skewed
Kurtosis	1.74	Very Leptokurtic
Mean [µm]	619.34	Coarse Sand
Mean [phi]	0.69	Coarse Sariu
Median [µm]	605.99	Coarse Sand
Median [phi]	0.72	Coarse Sario
Gravel [%]	8.51	
Sand [%]	91.49	Gravelly Sand
Mud [%]	0.00	



FE1_06

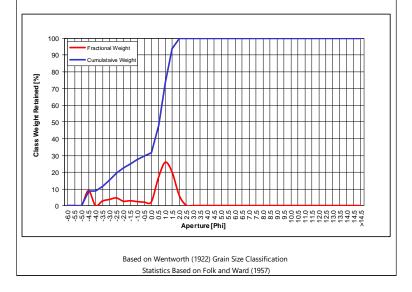
Aperture [µm]	Aperture [Phi]	Fractional [%]	Cumulative [%]
63000	-6.0	0.00	0.00
45000	-5.5	0.00	0.00
31500	-5.0	0.00	0.00
22400	-4.5	0.00	0.00
16000	-4.0	6.76	6.76
11200	-3.5	2.99	9.75
8000	-3.0	5.42	15.17
5600	-2.5	4.03	19.20
4000	-2.0	2.95	22.16
2800	-1.5	1.58	23.74
2000	-1.0	1.23	24.97
1400	-0.5	1.04	26.01
1000	0.0	0.85	26.85
707.00	0.5	5.33	32.18
500.00	1.0	17.88	50.06
353.60	1.5	25.96	76.03
250.00	2.0	17.83	93.86
176.80	2.5	4.75	98.61
125.00	3.0	0.11	98.72
88.39	3.5	0.00	98.72
63.00	4.0	0.00	98.72
44.20	4.5	0.00	98.72
31.30	5.0	0.00	98.72
22.10	5.5	0.00	98.72
15.60	6.0	0.00	98.72
11.00	6.5	0.16	98.88
7.80	7.0	0.23	99.11
5.50	7.5	0.24	99.35
3.90	8.0	0.23	99.58
2.75	8.5	0.20	99.78
1.95	9.0	0.16	99.94
1.38	9.5	0.06	100.00
0.98	10.0	0.00	100.00
0.69	10.5	0.00	100.00
0.49	11.0	0.00	100.00
0.34	11.5	0.00	100.00
0.24	12.0	0.00	100.00
0.17	12.5	0.00	100.00
0.12	13.0	0.00	100.00
0.09	13.5	0.00	100.00
0.06	14.0	0.00	100.00
0.04	14.5	0.00	100.00
< 0.04	>14.5	0.00	100.00
To	tal	100.00	100.00

Sorting	2.10	Very Poorly Sorted
Skewness	-0.66	Very Coarse Skewed
Kurtosis	1.04	Mesokurtic
Mean [µm]	1040.68	Very Coarse Sand
Mean [phi]	-0.06	very coarse saind
Median [µm]	500.60	Coarse Sand
Median [phi]	1.00	course suria
Gravel [%]	24.97	
Sand [%]	73.75	Gravelly Sand
Mud [%]	1.28	

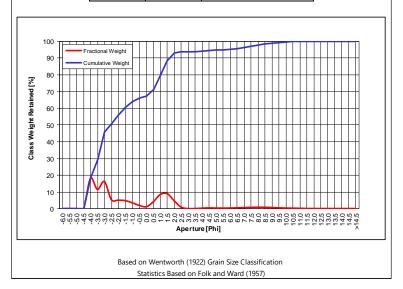


F	E1	07

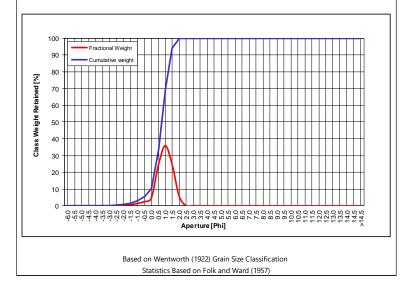
Aperture [µm]	Aperture [Phi]	Fractional [%]	Cumulative [%]
63000	-6.0	0.00	0.00
45000	-5.5	0.00	0.00
31500	-5.0	0.00	0.00
22400	-4.5	0.00	0.00
16000	-4.0	3.87	3.87
11200	-3.5	9.27	13.14
8000	-3.0	6.87	20.02
5600	-2.5	5.60	25.62
4000	-2.0	3.31	28.93
2800	-1.5	2.92	31.84
2000	-1.0	1.92	33.76
1400	-0.5	1.43	35.18
1000	0.0	0.88	36.07
707.00	0.5	7.04	43.11
500.00	1.0	23.94	67.05
353.60	1.5	24.90	91.95
250.00	2.0	7.74	99.69
176.80	2.5	0.31	100.00
125.00	3.0	0.00	100.00
88.39	3.5	0.00	100.00
63.00	4.0	0.00	100.00
44.20	4.5	0.00	100.00
31.30	5.0	0.00	100.00
22.10	5.5	0.00	100.00
15.60	6.0	0.00	100.00
11.00	6.5	0.00	100.00
7.80	7.0	0.00	100.00
5.50	7.5	0.00	100.00
3.90	8.0	0.00	100.00
2.75	8.5	0.00	100.00
1.95	9.0	0.00	100.00
1.38	9.5	0.00	100.00
0.98	10.0	0.00	100.00
0.69	10.5	0.00	100.00
0.49	11.0	0.00	100.00
0.34	11.5	0.00	100.00
0.24	12.0	0.00	100.00
0.17	12.5	0.00	100.00
0.12	13.0	0.00	100.00
0.09	13.5	0.00	100.00
0.06	14.0	0.00	100.00
0.04	14.5	0.00	100.00
< 0.04	>14.5	0.00	100.00
То	tal	100.00	100.00


Sorting	2.01	Very Poorly Sorted
Skewness	-0.66	Very Coarse Skewed
Kurtosis	0.62	Very Platykurtic
Mean [µm]	1350.16	Very Coarse Sand
Mean [phi]	-0.43	very Coarse Sariu
Median [µm]	639.90	Coarse Sand
Median [phi]	0.64	Coarse Sario
Gravel [%]	33.76	
Sand [%]	66.24	Sandy Gravel
Mud [%]	0.00	

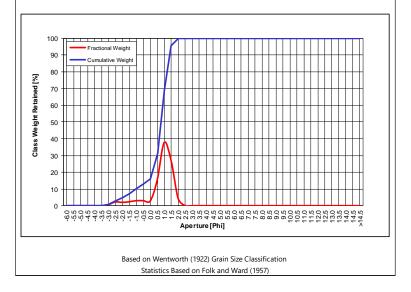
Aperture [µm]	Aperture [Phi]	Fractional [%]	Cumulative [%]
63000	-6.0	0.00	0.00
45000	-5.5	0.00	0.00
31500	-5.0	0.00	0.00
22400	-4.5	8.90	8.90
16000	-4.0	0.00	8.90
11200	-3.5	2.72	11.62
8000	-3.0	3.64	15.27
5600	-2.5	4.55	19.81
4000	-2.0	2.59	22.41
2800	-1.5	2.88	25.28
2000	-1.0	2.36	27.65
1400	-0.5	2.05	29.70
1000	0.0	2.06	31.76
707.00	0.5	16.17	47.93
500.00	1.0	25.78	73.71
353.60	1.5	19.83	93.54
250.00	2.0	6.22	99.76
176.80	2.5	0.24	100.00
125.00	3.0	0.00	100.00
88.39	3.5	0.00	100.00
63.00	4.0	0.00	100.00
44.20	4.5	0.00	100.00
31.30	5.0	0.00	100.00
22.10	5.5	0.00	100.00
15.60	6.0	0.00	100.00
11.00	6.5	0.00	100.00
7.80	7.0	0.00	100.00
5.50	7.5	0.00	100.00
3.90	8.0	0.00	100.00
2.75	8.5	0.00	100.00
1.95	9.0	0.00	100.00
1.38	9.5	0.00	100.00
0.98	10.0	0.00	100.00
0.69	10.5	0.00	100.00
0.49	11.0	0.00	100.00
0.34	11.5	0.00	100.00
0.24	12.0	0.00	100.00
0.17	12.5	0.00	100.00
0.12	13.0	0.00	100.00
0.09	13.5	0.00	100.00
0.06	14.0	0.00	100.00
0.04	14.5	0.00	100.00
< 0.04	>14.5	0.00	100.00
10	tai	100.00	100.00


Sorting	2.00	Very Poorly Sorted	
Skewness	-0.66	Very Coarse Skewed	
Kurtosis	1.01	Mesokurtic	
Mean [µm]	1294.49	Very Coarse Sand	
Mean [phi]	-0.37	very Coarse Sariu	
Median [µm]	687.62	Coarse Sand	
Median [phi]	0.54		
Gravel [%]	27.65	Gravelly Sand	
Sand [%]	70.30		
Mud [%]	0.00		

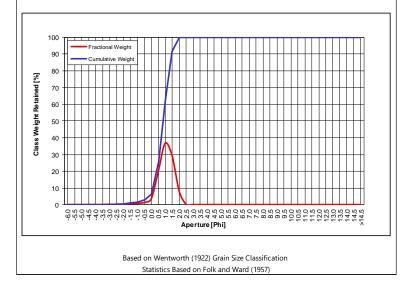
Aperture [µm]	Aperture [Phi]	Fractional [%]	Cumulative [%]
63000	-6.0	0.00	0.00
45000	-5.5	0.00	0.00
31500	-5.0	0.00	0.00
22400	-4.5	0.00	0.00
16000	-4.0	18.04	18.04
11200	-3.5	11.45	29.49
8000	-3.0	16.21	45.70
5600	-2.5	5.28	50.98
4000	-2.0	5.01	55.99
2800	-1.5	4.73	60.71
2000	-1.0	3.40	64.11
1400	-0.5	1.86	65.98
1000	0.0	1.07	67.05
707.00	0.5	3.98	71.03
500.00	1.0	8.35	79.38
353.60	1.5	8.93	88.31
250.00	2.0	4.64	92.95
176.80	2.5	0.82	93.77
125.00	3.0	0.00	93.77
88.39	3.5	0.00	93.77
63.00	4.0	0.22	93.99
44.20	4.5	0.38	94.37
31.30	5.0	0.28	94.65
22.10	5.5	0.25	94.90
15.60	6.0	0.31	95.21
11.00	6.5	0.43	95.64
7.80	7.0	0.55	96.19
5.50	7.5	0.68	96.87
3.90	8.0	0.75	97.61
2.75	8.5	0.73	98.34
1.95	9.0	0.58	98.92
1.38	9.5	0.41	99.33
0.98	10.0	0.28	99.61
0.69	10.5	0.21	99.83
0.49	11.0	0.14	99.97
0.34	11.5	0.03	100.00
0.24	12.0	0.00	100.00
0.17	12.5	0.00	100.00
0.12	13.0	0.00	100.00
0.09	13.5	0.00	100.00
0.06	14.0	0.00	100.00
0.04	14.5	0.00	100.00
< 0.04	>14.5	0.00	100.00
То	tal	100.00	100.00


Sorting	2.85	Very Poorly Sorted	
Skewness	0.55	Very Fine Skewed	
Kurtosis	0.93	Mesokurtic	
Mean [µm]	3463.80	Granule	
Mean [phi]	-1.79		
Median [µm]	5981.78	Pebble	
Median [phi]	-2.58		
Gravel [%]	64.11		
Sand [%]	29.88	Muddy Sandy Gravel	
Mud [%]	6.01		

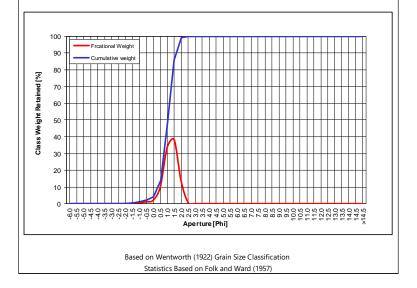
Aperture [µm]	Aperture [Phi]	Fractional [%]	Cumulative [%]
63000	-6.0	0.00	0.00
45000	-5.5	0.00	0.00
31500	-5.0	0.00	0.00
22400	-4.5	0.00	0.00
16000	-4.0	0.00	0.00
11200	-3.5	0.15	0.15
8000	-3.0	0.00	0.15
5600	-2.5	0.14	0.29
4000	-2.0	0.60	0.89
2800	-1.5	0.72	1.61
2000	-1.0	1.46	3.06
1400	-0.5	2.54	5.61
1000	0.0	4.46	10.07
707.00	0.5	23.73	33.80
500.00	1.0	35.75	69.55
353.60	1.5	24.57	94.12
250.00	2.0	5.81	99.93
176.80	2.5	0.07	100.00
125.00	3.0	0.00	100.00
88.39	3.5	0.00	100.00
63.00	4.0	0.00	100.00
44.20	4.5	0.00	100.00
31.30	5.0	0.00	100.00
22.10	5.5	0.00	100.00
15.60	6.0	0.00	100.00
11.00	6.5	0.00	100.00
7.80	7.0	0.00	100.00
5.50	7.5	0.00	100.00
3.90	8.0	0.00	100.00
2.75	8.5	0.00	100.00
1.95	9.0	0.00	100.00
1.38	9.5	0.00	100.00
0.98	10.0	0.00	100.00
0.69	10.5	0.00	100.00
0.49	11.0	0.00	100.00
0.34	11.5	0.00	100.00
0.24	12.0	0.00	100.00
0.17	12.5	0.00	100.00
0.12	13.0	0.00	100.00
0.09	13.5	0.00	100.00
0.06	14.0	0.00	100.00
0.04	14.5	0.00	100.00
< 0.04	>14.5	0.00	100.00
То	tal	100.00	100.00


Sorting	0.62	Moderately Well Sorted	
Skewness	-0.13	Coarse Skewed	
Kurtosis	1.12	Leptokurtic	
Mean [µm]	609.10	Coarse Sand	
Mean [phi]	0.72	Coarse Sario	
Median [µm]	604.27	Coarse Sand	
Median [phi]	0.73	Coarse Sario	
Gravel [%]	3.06		
Sand [%]	96.94	Slightly Gravelly Sand	
Mud [%]	0.00		

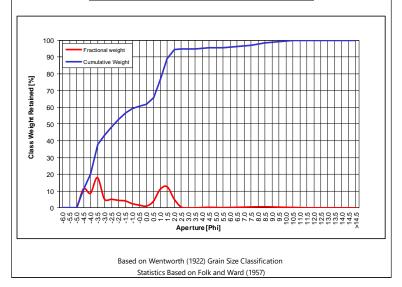
Aperture [µm]	Aperture [Phi]	Fractional [%]	Cumulative [%]
63000	-6.0	0.00	0.00
45000	-5.5	0.00	0.00
31500	-5.0	0.00	0.00
22400	-4.5	0.00	0.00
16000	-4.0	0.00	0.00
11200	-3.5	0.00	0.00
8000	-3.0	0.62	0.62
5600	-2.5	2.23	2.85
4000	-2.0	1.98	4.83
2800	-1.5	2.35	7.18
2000	-1.0	2.98	10.16
1400	-0.5	2.99	13.16
1000	0.0	2.82	15.97
707.00	0.5	15.32	31.30
500.00	1.0	37.64	68.93
353.60	1.5	26.75	95.69
250.00	2.0	4.30	99.99
176.80	2.5	0.01	100.00
125.00	3.0	0.00	100.00
88.39	3.5	0.00	100.00
63.00	4.0	0.00	100.00
44.20	4.5	0.00	100.00
31.30	5.0	0.00	100.00
22.10	5.5	0.00	100.00
15.60	6.0	0.00	100.00
11.00	6.5	0.00	100.00
7.80	7.0	0.00	100.00
5.50	7.5	0.00	100.00
3.90	8.0	0.00	100.00
2.75	8.5	0.00	100.00
1.95	9.0	0.00	100.00
1.38	9.5	0.00	100.00
0.98	10.0	0.00	100.00
0.69	10.5	0.00	100.00
0.49	11.0	0.00	100.00
0.34	11.5	0.00	100.00
0.24	12.0	0.00	100.00
0.17	12.5	0.00	100.00
0.12	13.0	0.00	100.00
0.09	13.5	0.00	100.00
0.06	14.0	0.00	100.00
0.04	14.5	0.00	100.00
< 0.04	>14.5	0.00	100.00
То	tal	100.00	100.00


Sorting	0.84	Moderately Sorted	
Skewness	-0.37	Very Coarse Skewed	
Kurtosis	1.73	Very Leptokurtic	
Mean [µm]	625.48	Coarse Sand	
Mean [phi]	0.68	Coarse Sario	
Median [µm]	595.19	Coarse Sand	
Median [phi]	0.75	Coarse Sario	
Gravel [%]	10.16		
Sand [%]	89.84	Gravelly Sand	
Mud [%]	0.00		

Aperture [µm]	Aperture [Phi]	Fractional [%]	Cumulative [%]
63000	-6.0	0.00	0.00
45000	-5.5	0.00	0.00
31500	-5.0	0.00	0.00
22400	-4.5	0.00	0.00
16000	-4.0	0.00	0.00
11200	-3.5	0.00	0.00
8000	-3.0	0.20	0.20
5600	-2.5	0.12	0.32
4000	-2.0	0.24	0.57
2800	-1.5	0.42	0.99
2000	-1.0	0.65	1.64
1400	-0.5	1.29	2.93
1000	0.0	3.33	6.26
707.00	0.5	19.52	25.78
500.00	1.0	36.71	62.49
353.60	1.5	29.19	91.67
250.00	2.0	8.11	99.78
176.80	2.5	0.22	100.00
125.00	3.0	0.00	100.00
88.39	3.5	0.00	100.00
63.00	4.0	0.00	100.00
44.20	4.5	0.00	100.00
31.30	5.0	0.00	100.00
22.10	5.5	0.00	100.00
15.60	6.0	0.00	100.00
11.00	6.5	0.00	100.00
7.80	7.0	0.00	100.00
5.50	7.5	0.00	100.00
3.90	8.0	0.00	100.00
2.75	8.5	0.00	100.00
1.95	9.0	0.00	100.00
1.38	9.5	0.00	100.00
0.98	10.0	0.00	100.00
0.69	10.5	0.00	100.00
0.49	11.0	0.00	100.00
0.34	11.5	0.00	100.00
0.24	12.0	0.00	100.00
0.17	12.5	0.00	100.00
0.12	13.0	0.00	100.00
0.09	13.5	0.00	100.00
0.06	14.0	0.00	100.00
0.04	14.5	0.00	100.00
< 0.04	>14.5	0.00	100.00
То	tal	100.00	100.00

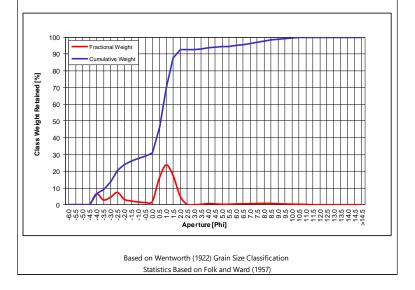

Sorting	0.57	Moderately Well Sorted
Skewness	-0.06	Symmetrical
Kurtosis	1.05	Mesokurtic
Mean [µm]	568.02	Coarse Sand
Mean [phi]	0.82	Coarse Sarid
Median [µm]	562.53	Coarse Sand
Median [phi]	0.83	Coarse Sario
Gravel [%]	1.64	
Sand [%]	98.36	Slightly Gravelly Sand
Mud [%]	0.00	

Aperture [µm]	Aperture [Phi]	Fractional [%]	Cumulative [%]
63000	-6.0	0.00	0.00
45000	-5.5	0.00	0.00
31500	-5.0	0.00	0.00
22400	-4.5	0.00	0.00
16000	-4.0	0.00	0.00
11200	-3.5	0.00	0.00
8000	-3.0	0.00	0.00
5600	-2.5	0.00	0.00
4000	-2.0	0.09	0.09
2800	-1.5	0.39	0.48
2000	-1.0	0.53	1.01
1400	-0.5	1.11	2.13
1000	0.0	2.02	4.15
707.00	0.5	9.79	13.94
500.00	1.0	33.64	47.58
353.60	1.5	38.26	85.83
250.00	2.0	13.46	99.29
176.80	2.5	0.71	100.00
125.00	3.0	0.00	100.00
88.39	3.5	0.00	100.00
63.00	4.0	0.00	100.00
44.20	4.5	0.00	100.00
31.30	5.0	0.00	100.00
22.10	5.5	0.00	100.00
15.60	6.0	0.00	100.00
11.00	6.5	0.00	100.00
7.80	7.0	0.00	100.00
5.50	7.5	0.00	100.00
3.90	8.0	0.00	100.00
2.75	8.5	0.00	100.00
1.95	9.0	0.00	100.00
1.38	9.5	0.00	100.00
0.98	10.0	0.00	100.00
0.69	10.5	0.00	100.00
0.49	11.0	0.00	100.00
0.34	11.5	0.00	100.00
0.24	12.0	0.00	100.00
0.17	12.5	0.00	100.00
0.12	13.0	0.00	100.00
0.09	13.5	0.00	100.00
0.06	14.0	0.00	100.00
0.04	14.5	0.00	100.00
< 0.04	>14.5	0.00	100.00
То	tal	100.00	100.00


Sorting	0.51	Moderately Well Sorted	
Skewness	-0.08	Symmetrical	
Kurtosis	1.06	Mesokurtic	
Mean [µm]	495.59	Medium Sand	
Mean [phi]	1.01	Wedium Sand	
Median [µm]	489.15	Medium Sand	
Median [phi]	1.03	Wiediaiii Sana	
Gravel [%]	1.01		
Sand [%]	98.99	Slightly Gravelly Sand	
Mud [%]	0.00		

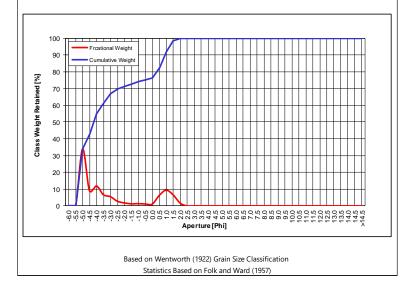
Aperture [µm]	Aperture [Phi]	Fractional [%]	Cumulative [%]
63000	-6.0	0.00	0.00
45000	-5.5	0.00	0.00
31500	-5.0	0.00	0.00
22400	-4.5	11.31	11.31
16000	-4.0	8.67	19.98
11200	-3.5	17.93	37.91
8000	-3.0	5.21	43.13
5600	-2.5	5.10	48.23
4000	-2.0	4.45	52.68
2800	-1.5	4.10	56.77
2000	-1.0	2.45	59.23
1400	-0.5	1.61	60.84
1000	0.0	1.05	61.89
707.00	0.5	3.74	65.62
500.00	1.0	10.96	76.58
353.60	1.5	12.51	89.09
250.00	2.0	5.26	94.35
176.80	2.5	0.51	94.86
125.00	3.0	0.00	94.86
88.39	3.5	0.00	94.86
63.00	4.0	0.18	95.04
44.20	4.5	0.31	95.35
31.30	5.0	0.19	95.54
22.10	5.5	0.14	95.68
15.60	6.0	0.20	95.88
11.00	6.5	0.30	96.18
7.80	7.0	0.40	96.58
5.50	7.5	0.53	97.11
3.90	8.0	0.61	97.72
2.75	8.5	0.64	98.36
1.95	9.0	0.54	98.91
1.38	9.5	0.42	99.32
0.98	10.0	0.30	99.62
0.69	10.5	0.22	99.85
0.49	11.0	0.14	99.98
0.34	11.5	0.02	100.00
0.24	12.0	0.00	100.00
0.17	12.5	0.00	100.00
0.12	13.0	0.00	100.00
0.09	13.5	0.00	100.00
0.06	14.0	0.00	100.00
0.04	14.5	0.00	100.00
< 0.04	>14.5	0.00	100.00
То	tal	100.00	100.00

Sorting	2.69	Very Poorly Sorted	
Skewness	0.36	Very Fine Skewed	
Kurtosis	0.74	Platykurtic	
Mean [µm]	3339.27	Granule	
Mean [phi]	-1.74	Granule	
Median [µm]	4897.43	Pebble	
Median [phi]	-2.29		
Gravel [%]	59.23		
Sand [%]	35.81	Muddy Sandy Gravel	
Mud [%]	4.96		

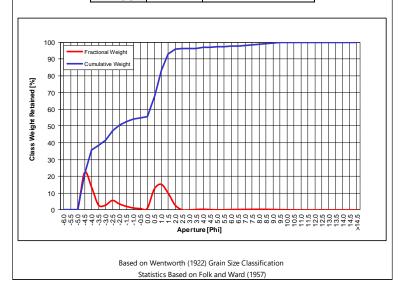


F	E3	0.

Aperture [µm]	Aperture [Phi]	Fractional [%]	Cumulative [%]
63000	-6.0	0.00	0.00
45000	-5.5	0.00	0.00
31500	-5.0	0.00	0.00
22400	-4.5	0.00	0.00
16000	-4.0	6.42	6.42
11200	-3.5	2.79	9.21
8000	-3.0	4.37	13.59
5600	-2.5	7.30	20.89
4000	-2.0	3.16	24.05
2800	-1.5	2.21	26.26
2000	-1.0	1.56	27.83
1400	-0.5	1.30	29.13
1000	0.0	1.81	30.94
707.00	0.5	15.59	46.53
500.00	1.0	23.63	70.17
353.60	1.5	17.23	87.40
250.00	2.0	5.10	92.50
176.80	2.5	0.23	92.72
125.00	3.0	0.00	92.72
88.39	3.5	0.21	92.94
63.00	4.0	0.64	93.58
44.20	4.5	0.48	94.05
31.30	5.0	0.24	94.29
22.10	5.5	0.27	94.57
15.60	6.0	0.42	94.99
11.00	6.5	0.52	95.51
7.80	7.0	0.59	96.10
5.50	7.5	0.69	96.79
3.90	8.0	0.75	97.54
2.75	8.5	0.73	98.28
1.95	9.0	0.59	98.87
1.38	9.5	0.43	99.30
0.98	10.0	0.31	99.61
0.69	10.5	0.24	99.84
0.49	11.0	0.16	100.00
0.34	11.5	0.00	100.00
0.24	12.0	0.00	100.00
0.17	12.5	0.00	100.00
0.12	13.0	0.00	100.00
0.09	13.5	0.00	100.00
0.06	14.0	0.00	100.00
0.04	14.5	0.00	100.00
< 0.04	>14.5	0.00	100.00
То	tal	100.00	100.00


Sorting	2.59	Very Poorly Sorted	
Skewness	-0.27	Coarse Skewed	
Kurtosis	1.42	Leptokurtic	
Mean [µm]	1218.47	Very Coarse Sand	
Mean [phi]	-0.29	very Coarse Sario	
Median [µm]	671.96	Coarse Sand	
Median [phi]	0.57		
Gravel [%]	27.83		
Sand [%]	65.75	Gravelly Sand	
Mud [%]	6.42		

Aperture [µm]	Aperture [Phi]	Fractional [%]	Cumulative [%]
63000	-6.0	0.00	0.00
45000	-5.5	0.00	0.00
31500	-5.0	33.81	33.81
22400	-4.5	8.97	42.78
16000	-4.0	11.91	54.69
11200	-3.5	6.63	61.32
8000	-3.0	5.52	66.84
5600	-2.5	2.75	69.59
4000	-2.0	1.79	71.38
2800	-1.5	1.22	72.60
2000	-1.0	1.34	73.94
1400	-0.5	1.14	75.08
1000	0.0	1.09	76.17
707.00	0.5	6.21	82.38
500.00	1.0	9.38	91.76
353.60	1.5	6.57	98.33
250.00	2.0	1.66	99.99
176.80	2.5	0.01	100.00
125.00	3.0	0.00	100.00
88.39	3.5	0.00	100.00
63.00	4.0	0.00	100.00
44.20	4.5	0.00	100.00
31.30	5.0	0.00	100.00
22.10	5.5	0.00	100.00
15.60	6.0	0.00	100.00
11.00	6.5	0.00	100.00
7.80	7.0	0.00	100.00
5.50	7.5	0.00	100.00
3.90	8.0	0.00	100.00
2.75	8.5	0.00	100.00
1.95	9.0	0.00	100.00
1.38	9.5	0.00	100.00
0.98	10.0	0.00	100.00
0.69	10.5	0.00	100.00
0.49	11.0	0.00	100.00
0.34	11.5	0.00	100.00
0.24	12.0	0.00	100.00
0.17	12.5	0.00	100.00
0.12	13.0	0.00	100.00
0.09	13.5	0.00	100.00
0.06	14.0	0.00	100.00
0.04	14.5	0.00	100.00
< 0.04	>14.5	0.00	100.00
То	tal	100.00	100.00


Sorting	2.47	Very Poorly Sorted	
Skewness	0.64	Very Fine Skewed	
Kurtosis	0.59	Very Platykurtic	
Mean [µm]	7732.83	Pebble	
Mean [phi]	-2.95		
Median [µm]	18268.00	Pebble	
Median [phi]	-4.19		
Gravel [%]	73.94	Sandy Gravel	
Sand [%]	26.06		
Mud [%]	0.00		

Aperture [µm]	Aperture [Phi]	Fractional [%]	Cumulative [%]
63000	-6.0	0.00	0.00
45000	-5.5	0.00	0.00
31500	-5.0	0.00	0.00
22400	-4.5	21.98	21.98
16000	-4.0	13.68	35.66
11200	-3.5	2.96	38.62
8000	-3.0	2.81	41.44
5600	-2.5	5.65	47.08
4000	-2.0	3.57	50.66
2800	-1.5	2.15	52.80
2000	-1.0	1.19	53.99
1400	-0.5	0.83	54.82
1000	0.0	0.90	55.72
707.00	0.5	12.27	67.99
500.00	1.0	15.17	83.16
353.60	1.5	9.94	93.11
250.00	2.0	2.89	96.00
176.80	2.5	0.14	96.14
125.00	3.0	0.00	96.14
88.39	3.5	0.28	96.42
63.00	4.0	0.42	96.84
44.20	4.5	0.23	97.07
31.30	5.0	0.10	97.17
22.10	5.5	0.14	97.32
15.60	6.0	0.23	97.55
11.00	6.5	0.29	97.83
7.80	7.0	0.33	98.16
5.50	7.5	0.38	98.55
3.90	8.0	0.40	98.95
2.75	8.5	0.37	99.31
1.95	9.0	0.28	99.59
1.38	9.5	0.19	99.79
0.98	10.0	0.13	99.91
0.69	10.5	0.08	100.00
0.49	11.0	0.00	100.00
0.34	11.5	0.00	100.00
0.24	12.0	0.00	100.00
0.17	12.5	0.00	100.00
0.12	13.0	0.00	100.00
0.09	13.5	0.00	100.00
0.06	14.0	0.00	100.00
0.04	14.5	0.00	100.00
< 0.04	>14.5	0.00	100.00
То	tal	100.00	100.00

Sorting	2.43	Very Poorly Sorted	
Skewness	0.14	Fine Skewed	
Kurtosis	0.54	Very Platykurtic	
Mean [µm]	3703.06	Granule	
Mean [phi]	-1.89	Gialiule	
Median [µm]	4254.66	Pebble	
Median [phi]	-2.09	i ebbic	
Gravel [%]	53.99		
Sand [%]	42.85	Sandy Gravel	
Mud [%]	3.16		

D.3 Subtidal Grab Sample Photographs

Station FE1_01

Station FE1_02

Station FE1_03

Station FE1_04

Station FE1_05

Station FE1_06

Station FE1_07

Station FE1_08

Station FE2_01

Station FE2_02

Station FE2_03

Station FE2_04

Station FE2_05

Station FE2_06

Station FE3_01

Station FE3_02

Station FE3_03

Appendix E

Chemistry Analysis Certificates

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID	MAR01220
rest neport ib	MANUIZZ

Issue Version 1

Customer Fugro GB Marine Ltd

Customer Reference 200867 Five Estuaries MMO Analysis - Batch 1

Date Sampled 09-15-Nov-2021

Date Received 25-Nov-21

Date Reported 22-Dec-21

Condition of samples Frozen Satisfactory

Authorised by: Marya Hubbard

Position: Laboratory Manager

Any additional opinions or interpretations found in this report, are outside the scope of UKAS accreditation.

This report shall not be reproduced, except in full, without the written permission of the laboratory Results contained herewith only apply to the samples tested

Page 1 of 15

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01220

Issue Version

		Units	mg/Kg (Dry Weight)						
		Method No	SOCOTEC Env Chem*						
		Limit of Detection	0.5	0.04	0.5	0.5	0.01	0.5	0.5
		Accreditation	UKAS/MMD	UKAS/MMD	UKAS/MMO	UKAS/MM0	UKAS/MM0	UKAS/MMD	UKAS/MMD
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Copper (Cu)	Mercury (Hg)	Nickel (Ni)	Lead (Pb)
FE3_01	MAR.01220.001	Sediment	18.8	0.08	6.9	5.2	0.02	9.6	4.4
FE5_09	MAR 01220.002	Sediment	46.1	0.28	42.9	31.3	0.05	55.9	15.6
FE7b_02	MAR.01220.003	Sediment	14.2	0.14	19.9	15.1	0.07	16.0	17.3
FE7b_04	MAR.01220.004	Sediment	39.3	0.31	20.7	21.5	0.10	56.0	17.1
FE7c_04	MAR.01220.005	Sediment	10.7	0.09	13.9	9.6	0.05	11.3	12.7
FE7g_03	MAR01220.006	Sediment	9.7	0.10	12.1	9.5	0.04	9.4	12.3
	Certified Reference Material SET	OC 774 (% Recovery)	105	107	102.0	101	101	103	103
		QC Blank	< 0.5	<0.04	< 0.5	<0.5	<0.01	<0.5	<0.5

^{*} See Report Notes

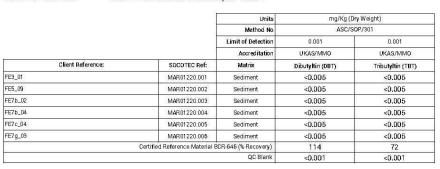
Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01220

Issue Version

		Units	mg/Kg (Dry Weight)	mg/Kg (Dry Weight)	mg/Kg (Dry Weight)	mg/Kg (Dry Weight)
		Method No	SOCOTEC Env Chem*	SOCOTEC Env Chem*	SOCOTEC Env Chem*	SOCOTEC Env Chem*
		Limit of Detection	2	10	1	0.5
	18	Accreditation	UKAS/MMO	N	N	N.
Client Reference:	SOCOTEC Ref:	Matrix	Zinc (Zn)	Aluminium as Al	Barium as Ba	Tin as Sn
-E3_01	MAR01220.001	Sediment	14.4	3160	121	<0.5
E5_09	MAR01220.002	Sediment	85.6	21100	101	1.0
FE7b_02	MAR01220.003	Sediment	53.4	8930	62.3	1.1
FE7b_04	MAR01220.004	Sediment	62.3	10500	55.9	1.0
FE7c_04	MAR01220.005	Sediment	37.6	5850	53.9	0.8
E7g_03	MAR01220.006	Sediment	38.1	4200	48.8	0.7
Ĵ	Certified Reference Material SET	OC 774 (% Recovery)	102	95	98	103
		QC Blank	<2	<10	<1	<0.5

^{*} See Report Notes



Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

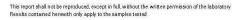
Test Report ID MAR01220

Issue Version

^{*} See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01220


Issue Version

Customer Reference 200867 Five Estuaries MMO Analysis - Batch 1

	12 5	Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
	·	Limit of Detection	1	.1	1	i	ñ	1
	8	Accreditation	UKAS/MMO	UKAS/MM0	UKAS/MM0	UKAS/MM0	UKAS/MM0	UKAS/MM0
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF
E3_01	MAR01220.001	Sediment	<1	<1	<1	<1	<1	<1
E5_09	MAR01220.002	Sediment	<1	< 1	<1	1.11	<1	1.78
E7b_02	MAR01220.003	Sediment	5.27	4.48	10.1	24.9	32.1	33.2
E7b_04	MAR01220.004	Sediment	1.73	1.97	5.06	9.32	10.5	15.3
E7c_04	MAR01220.005	Sediment	2.80	4.19	8.23	17.9	16.7	25.7
E7g_03	MAR01220.005	Sediment	2.04	1.87	5.17	11.9	12.5	18.0
Certified Reference	e Material Quasimeme QPH	1097MS (% Recovery)	67	102	77	80	80	75
		QC Blank	<1	<1	<1	<1	<1	<1

[~] Indicates result is for an In-house Reference Material as

no Certified Reference Materials are avaliable.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01220

Issue Version

Customer Reference 200867 Five Estuaries MMO Analysis - Batch 1

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOF/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	(1)	1	1	ii ii	i
		Accreditation	UKAS/MMO	UKAS/MM0	UKAS/MM0	MMO	MMD	MMD
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BEP	BKF	CIN	CIPHEN	C2N
FE3_01	MAR01220.001	Sediment	<1	<1	<1	<1	<1	<1
FE5_09	MAR01220.002	Sediment	<1	1.98	1.38	5.93	4.17	7.36
FE7b_02	MAR01220.003	Sediment	33.7	46.5	28.1	129	72.1	101
FE7b_04	MAR01220.004	Sediment	14.6	18.9	8.00	44.9	27.2	37.7
E7c_04	MAR01220.005	Sediment	21.2	29.1	18.7	81.3	44.9	61.8
E7g_03	MAR01220.006	Sediment	15.5	19.5	13.5	53.9	33.0	44.7
Certified Refere	ence Material Quasimeme QPF	1097MS (% Recovery)	84	82	95	96	75	106
		QC Blank	<1	<1	<1	<1	<1	<1

[~] Indicates result is for an In-house Reference Material as

no Certified Reference Materials are avaliable.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01220

Issue Version

Customer Reference 200867 Five Estuaries MMO Analysis - Batch 1

		Units	μg/Kg (Dry Weight)					
		Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
		Limit of Detection	1	1	1	i	î	1
		Accreditation	MMO	MMO	UKAS/MMO	UKAS/MM0	UKAS/MM0	UKAS/MM0
Client Reference:	SOCOTEC Ref:	Matrix	C3N	CHRYSENE	DBENZAH	FLUORANT	FLUORENE	INDPYR
FE3_01	MAR01220.001	Sediment	<1	<1	<1	<1	<1	٧٦
FE5_09	MAR 01 22 0.00 2	Sediment	4.22	1.46	<1	4.38	<1	<1
E7b_02	MAR01220.003	Sediment	79.9	33.6	3.40	59.6	9.16	25.4
FE7b_04	MAR01220.004	Sediment	28.8	16.5	1.50	24.9	3.59	8.31
E7c_04	MAR01220.005	Sediment	48.8	28.0	2.78	39.7	5.93	14.9
E7g_03	MAR01220.006	Sediment	36.4	18.5	1.50	28.7	3.85	10.2
Certified Refe	Certified Reference Material Quasimeme QPH097MS (% Recovery)			85	69	75	91	88
		QC Blank	<1	<1	<1	<1	<1	<1

[~] Indicates result is for an In-house Reference Material as

no Certified Reference Materials are avaliable.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01220

Issue Version

Customer Reference 200867 Five Estuaries MMO Analysis - Batch 1

		Units	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	μg/Kg (Dry Weight)	mg/Kg
		Method No	ASC/SOF/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/305
		Limit of Detection	1	of l	1	1	1
		Accreditation	UKAS/MM0	MMO	UKAS/MMO	UKAS/MM0	MMO
Client Reference:	SOCOTEC Ref:	Matrix	NAPTH	PERYLENE	PHENANT	PYRENE	THC
E3_01	MAR01220.001	Sediment	<1	<1	<1	<1	<1
E5_09	MAR01220.002	Sediment	2.31	< 1	3.81	4.61	<1
E7b_02	MAR01220.003	Sediment	42.8	17.9	64.9	54.6	9.56
E7b_04	MAR01220.004	Sediment	14.7	9.25	22.2	26.1	8.24
E7c_04	MAR01220.005	Sediment	30.5	12.9	39.2	38.4	10.3
E7g_03	MAR01220.006	Sediment	20.1	9.33	27.2	27.9	9.78
Certified Refere	nce Material Quasimeme QPH0	97MS (% Recovery)	98	84	72	80	100~
		QC Blank	<1	<1	1	<1	<1

[~] Indicates result is for an In-house Reference Material as

no Certified Reference Materials are avaliable.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01220

Issue Version

Customer Reference 200867 Five Estuaries MMO Analysis - Batch 1

		Units mg/Kg (Dry Weight)	mg/Kg (Dry Weight)						
	Meth	d No ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302
	Limit of Dete	ction 0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008
	Accredi	ation UKAS/MMO	UKAS/MM0	UKAS/MM0	UKAS/MM0	UKAS/MM0	UKAS/MMD	UKAS/MMO	UKAS/MMD
Client Reference:	SOCOTEC Ref: Matrix	PCB 101	PCB 105	PCB 110	PCB 118	PCB 128	PCB 138	PCB 141	PCB 149
FE3_01	MAR01220.001 Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
FE5_09	MAR01220.002 Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
FE7b_02	MAR01220.003 Sediment	0.00012	<0.00008	0.00016	0.00016	<0.00008	0.00012	<0.00008	0.00011
FE7b_04	MAR01220.004 Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	0.00008	<0.00008	<0.00008
FE7c_04	MAR01220.005 Sediment	<0.00008	<0.00008	<0.00008	0.00009	<0.00008	<0.00008	<0.00008	<0.00008
FE7g_03	MAR01220.006 Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
Certified Reference	e Material Quasimeme QOR147MS (% Reco	very) 96	79	113	101	109~	11"	108	98
	QC I	llank <0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008

[~] Indicates result is for an In-house Reference Material as

no Certified Reference Materials are avaliable.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01220

Issue Version

Customer Reference 200867 Five Estuaries MMO Analysis - Batch 1

	Units	mg/Kg (Dry Weight)																
	Method No	Method No	Method No	Method No	Method No	Method No	Method No	Method No	Method No	Method No	Method No	ASC/SOP/302						
	Limit of Detection	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008										
1	Accreditation	UKAS/MMO	UKAS/MMO	UKAS/MM0	UKAS/MMO	UKAS/MMO	UKAS/MMO	UKAS/MMO										
SOCOTEC Ref:	Matrix	PCB 151	PCB 153	PCB 156	PCB 158	PCB 170	PCB 18	PCB 180										
MAR01220.001	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008										
MAR01220.002	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008										
MAR01220.003	Sediment	<0.00008	0.00022	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008										
MAR01220.004	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008										
MAR01220.005	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008										
MAR01220.006	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008										
nce Material Quasimeme QOR14	7MS (% Recovery)	87	98	95	118	75	90	91										
	QC Blank	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008										
	MAR01220.001 MAR01220.002 MAR01220.003 MAR01220.004 MAR01220.005 MAR01220.006	Method No	Method No ASC/SOP/302 ASC/SOP/302															

[~] Indicates result is for an In-house Reference Material as

no Certified Reference Materials are avaliable.

This report shall not be reproduced, except in full, without the written permission of the laboratory Results contained herewith only apply to the samples tested

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01220

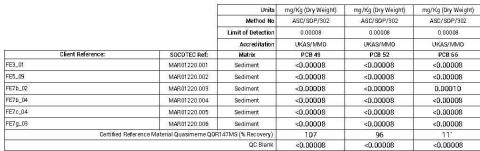
Issue Version

Customer Reference 200867 Five Estuaries MMO Analysis - Batch 1

		Units	mg/Kg (Dry Weight)						
		Method No Limit of Detection	ASC/SOP/302						
	,		0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008
		Accreditation	UKAS/MM0	UKAS/MMO	UKAS/MM0	UKAS/MM0	UKAS/MM0	UKAS/MM0	UKAS/MM0
Client Reference:	SOCOTEC Ref:	Matrix	PCB 183	PCB 187	PCB 194	PCB 28	PCB 31	PCB 44	PCB 47
FE3_01	MAR01220.001	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
FE5_09	MAR01220.002	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
FE7b_02	MAR01220.003	Sediment	<0.00008	<0.00008	<0.00008	0.00009	<0.00008	<0.00008	<0.00008
FE7b_04	MAR01220.004	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
FE7c_04	MAR01220.005	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
FE7g_03	MAR01220.006	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
Certified Refer	ence Material Quasimeme QOR	147MS (% Recovery)	106~	100	81	74	116	93	107~
		QC Blank	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008

[~] Indicates result is for an In-house Reference Material as

no Certified Reference Materials are avaliable.



Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01220

Issue Version

Customer Reference 200867 Five Estuaries MMO Analysis - Batch T

[~] Indicates result is for an In-house Reference Material as

no Certified Reference Materials are avaliable.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01220

Issue Version

		Units				mg/K	g (Dry Weight)			
		Method No				AS	C/SOP/302			
		Limit of Detection					0.0001			
	1	Accreditation	UKAS/MMO	UKAS/MM0	UKAS/MMD	UKAS/MM0	UKAS/MM0	UKAS/MMD	UKAS/MMO	UKAS/MMD
Client Reference:	SOCOTEC Ref:	Matrix	AHCH	внсн	GHCH	DIELDRIN	HCB	PPTDE	PPDDE	PPDDT
FE3_01	MAR01220.001	Sediment	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001
FE5_09	MAR01220.002	Sediment	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
FE7b_02	MAR01220.003	Sediment	<0.0001	<0.0001	< 0.0001	0.0001	<0.0001	0.0002	0.0003	<0.0001
FE7b_04	MAR01220.004	Sediment	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	0.0001	<0.0001
FE7c_04	MAR01220.005	Sediment	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	0.0002	0.0001	<0.0001
FE7g_03	MAR01220.006	Sediment	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001
Certified Refe	Certified Reference Material Quasimeme QOR147MS (% Recovery)			99~	122~	108	103	56	83	95~
		QC Blank	< 0.0001	<0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001	<0.0001	< 0.0001

[~] Indicates result is for an In-house Reference Material as

no Certified Reference Materials are avaliable.

For full analyte name see method summaries

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01220

Issue Version

Customer Reference 200867 Five Estuaries MMO Analysis - Batch 1

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
SOCOTEC Env Chem*	MAR01220.001-006	Analysis was conducted by an internal SOCOTEC laboratory, UKAS accredited analysis by this laboratory is under UKAS number 1252.
ASC/SOP/301	MAR01220.001-006	The matrix of this sample has been found to interfere with the result for this test. The sample has therefore been diluted, but in doing so, the detection limit for this test has been elevated.
ASC/SOP/303/304	MAR01220.002-006	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved in the PAHSED UKAS accredited method. Chrysene and Triphenylene are resolved for MMO but this is currently not UKAS accredited therefore Chrysene is reported without this accreditation.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Handling Time Exceeded	N/A	N/A
D3	Sample Contaminated through Damaged Packaging	N/A	N/A
D4	Sample Contaminated through Sampling	N/A	N/A
D5	Inappropriate Container/Packaging	N/A	N/A
D6	Damaged in Transit	N/A	N/A
D7	Insufficient Quantity of Sample	y of Sample N/A N/A	
D8	Inappropriate Headspace	N/A	N/A
D9	Retained at Incorrect Temperature	N/A	N/A
D10	Lack of Date & Time of Sampling	N/A	N/A
D11	Insufficient Sample Details	N/A	N/A
D12	Sample integrity compromised or not suitable for analysis	N/A	N/A

This report shall not be reproduced, except in full, without the written permission of the laboratory Results contained herewith only apply to the samples tested

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01220

Issue Version

Customer Reference 200867 Five Estuaries MMO Analysis - Batch 1

Method	Sample and Fraction Size	Method Summary					
Metals	Air dried	Aqua-regia extraction followed by ICP analysis.					
Organotins	Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.					
Polyaromatic Hydrocarbons (PAH)	Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.					
Total Hydrocarbon Content (THC)	Wet Sediment	Ultra-violet fluorescence spectroscopy					
Polychlorinated Biphenyls (PCBs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by CC-MS-MS analysis.					
Organochlorine Pesticides (OCPs)	Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.					

		Analyte D	efinitions			
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content	
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorocyclohexane	
ANTHRACN	Anthracene	CHRYSENE	Chrysene	BHCH	beta-Hexachlorocyclohexane	
BAA	Benzo[a] anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorocyclohexane	
BAP	Benzo(a)pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin	
BBF	Benzo(b)fluoranthene	FLUORENE	Fluorene	HCE	Hexachlorobenzene	
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	PPDDE	p,p*-Dichlorodiphenyldichloroethylen	
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalene	PPDDT	p,p*-Dichlorodiphenyltrichloroethane	
BKF	Benzo(k)fluoranthene	PERYLENE	Perylene	PPTDE	p,p'-Dichloro diphenyldichloro ethane	
C1N	C1-naphthalenes	PHENANT	Phenanthrene		No.	
C1PHEN	C1-phenanthrene	PYRENE	Pyrene			

This report shall not be reproduced, except in full, without the written permission of the laboratory Results contained herewith only apply to the samples tested

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MA	AR01229
-------------------	---------

Issue Version 1

Customer Fugro GB Marine Ltd, Unit 16 Trafalgar Wharf, Hamilton Road, Portchester, P06 4PX

Customer Reference 200867 Five Estuaries MMO Analysis - Batch 2

Date Sampled 25/07 & 09-12/11/2021

Date Received 30-Nov-21

Date Reported 06-Jan-22

Condition of samples Frozen Satisfactory

Authorised by: Marya Hubbard

Position: Laboratory Manager

Any additional opinions or interpretations found in this report, are outside the scope of UKAS accreditation.

This report shall not be reproduced, except in full, without the written permission of the laboratory Results contained herewith only apply to the samples tested

Page 1 of 15

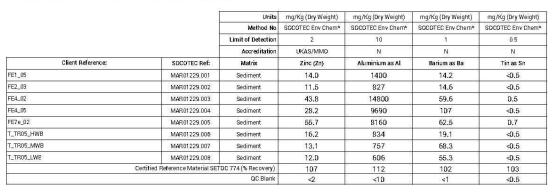
Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01229

Issue Version 1

		Units m	mg/Kg (Dry Weight)		mg/Kg (Dry Weight) SOCOTEC Env Chem*	mg/Kg (Dry Weight) SOCOTEC Env Chem*	mg/Kg (Dry Weight) SOCOTEC Env Chem*	mg/Kg (Dry Weight) SOCOTEC Env Chem*	mg/Kg (Dry Weight) SOCOTEC Env Chem*			
		Method No	SOCOTEC Env Chem*									
		Limit of Detection Accreditation	10 700	Limit of Detection	Limit of Detection 0.5	0.5	0.04	0.5	0.5	0.01	0.5	0.5
	1			UKAS/MMD	UKAS/MMD	UKAS/MMO	UKAS/MM0	UKAS/MMD	UKAS/MMO	UKAS/MMD		
Client Reference:	SOCOTEC Ref:	Matrix	Arsenic (As)	Cadmium (Cd)	Chromium (Cr)	Copper (Cu)	Mercury (Hg)	Nickel (Ni)	Lead (Pb)			
FE1_05	MAR01229.001	Sediment	8.7	0.08	4.1	5.4	0.02	5.1	3.8			
FE2_03	MAR01229.002	Sediment	10.2	0.06	3.1	5,4	0.01	5.5	3.1			
FE4_02	MAR01229.003	Sediment	73.3	0.28	23.2	11.4	0.03	58.2	8.8			
FE4_05	MAR01229.004	Sediment	40.0	0.50	16.5	6.7	0.02	20.9	6.3			
FE7e_02	MAR01229.005	Sediment	13.9	0.13	20.1	13.0	0.04	14.2	13.3			
T_TR05_HWB	MAR01229.006	Sediment	4.0	<0.04	2.9	5.8	<0.01	3.8	3.4			
T_TR05_MWB	MAR01229.007	Sediment	6.2	0.08	5.4	6.7	0.04	6.4	3.6			
T_TR05_LWE	MAR01229.008	Sediment	5.4	<0.04	3.1	6.1	0.02	4.2	6.7			
(Certified Reference Material SETO	C 774 (% Recovery)	98	104	103	99	89	113	92			
		QC Blank	<0.5	<0.04	< 0.5	<0.5	<0.01	<0.5	<0.5			

^{*} See Report Notes

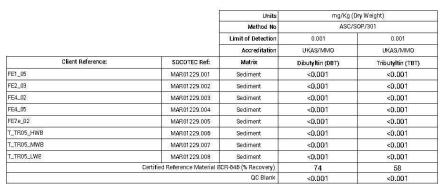


Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01229

Issue Version

^{*} See Report Notes



Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01229

Issue Version

^{*} See report notes

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01229

Issue Version

		Units	μg/Kg (Dry Weight)							
		Method No Limit of Detection Accreditation	Limit of Detection		ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
	Γ				Limit of Detection	î	.1	1	1	1
	5			UKAS/MM0	UKAS/MMO	UKAS/MMO	UKAS/MMO	UKAS/MM0	UKAS/MM0	
Client Reference:	SOCOTEC Ref:	Matrix	ACENAPTH	ACENAPHY	ANTHRACN	BAA	BAP	BBF		
1_05	MAR01229.001	Sediment	<1	<1	<1	<1	<1	<1		
2_03	MAR01229.002	Sediment	<1	<1	<1	<1	<1	<1		
4_02	MAR01229.003	Sediment	<1	<1	<1	<1	<1	<1		
4_05	MAR01229.004	Sediment	<1	<1	<1	<1	1.28	1.59		
7e_02	MAR01229.005	Sediment	2.95	5.24	8.90	23.6	28.3	33.9		
TR05_HWB	MAR01229.005	Sediment	<1	<1	1.27	5.60	6.29	5.88		
TR05_MWB	MAR01229.007	Sediment	<1	<1	<1	2.97	3.63	3.11		
TR05_LWE	MAR01229.008	Sediment	<1	<1	<1	1.67	2.86	2.74		
Certified Refere	nce Material Quasimeme QPH0	97MS (% Recovery)	81	97	86	80	79	76		
		QC Blank	<1	<1	<1	<1	<1	<1		

[~] Indicates result is for an In-house Reference Material as

no Certified Reference Materials are avaliable.

For full analyte name see method summaries

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01229

Issue Version

Customer Reference 200867 Five Estuaries MMO Analysis - Batch 2

		Units	μg/Kg (Dry Weight)								
		Method No	ASC/SOF/303/304	ASC/SDP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304			
		Limit of Detection Accreditation		Limit of Detection	Limit of Detection	1	1	1	1	1	1
				UKAS/MM0	UKAS/MM0	UKAS/MM0	MMO	MMD	MMO		
Client Reference:	SOCOTEC Ref:	Matrix	BENZGHIP	BEP	BKF	CIN	CIPHEN	C2N			
FE1_05	MAR01229.001	Sediment	<1	<1	<1	<1	<1	<1			
FE2_03	MAR 01 229.002	Sediment	<1	<1	<1	<1	<1	<1			
FE4_02	MAR01229.003	Sediment	1.31	1.23	<1	2.05	1.47	2.11			
FE4_05	MAR01229.004	Sediment	1.69	1.82	1.14	2.83	1.78	3.03			
FE7e_02	MAR01229.005	Sediment	31.6	32.4	18.8	53.3	41.9	46.0			
T_TR05_HWB	MAR01229.006	Sediment	4.40	5.10	3.85	<1	2.14	1.50			
r_TR05_MWB	MAR01229.007	Sediment	2.49	3.08	2.48	<1	1.53	<1			
r_TR05_LWE	MAR01229.008	Sediment	2.25	2.64	1.81	<1	<1	1.49			
Certified Referen	nce Material Quasimeme QPH0	97MS (% Recovery)	86	83	102	91	89	108			
		QC Blank	<1	<1	<1	<1	<1	<1			

[~] Indicates result is for an In-house Reference Material as

This report shall not be reproduced, except in full, without the written permission of the laboratory Results contained herewith only apply to the samples tested

no Certified Reference Materials are avaliable.

For full analyte name see method summaries

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01229

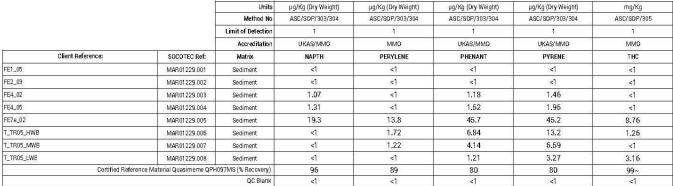
Issue Version

Customer Reference 200867 Five Estuaries MMO Analysis - Batch 2

		Units	μg/Kg (Dry Weight)					
	31	Method No	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304	ASC/SOP/303/304
	Ĭ	Limit of Detection	1	of l	i	î	1	1
	4	Accreditation	MMO	MMO	UKAS/MM0	UKAS/MM0	UKAS/MM0	UKAS/MM0
Client Reference:	SOCOTEC Ref:	Matrix	C3N	CHRYSENE	DBENZAH	FLUORANT	FLUORENE	INDPYR
FE1_05	MAR01229.001	Sediment	<1	<1	<1	<1	<1	<1
FE2_03	MAR01229.002	Sediment	<1	<1	<1	<1	<1	<1
FE4_02	MAR01229.003	Sediment	1.41	<1	<1	1.49	<1	<1
FE4_05	MAR01229.004	Sediment	1.94	1.17	<1	2.11	<1	1.53
FE7e_02	MAR01229.005	Sediment	47.4	27.4	3.56	52.7	6.35	24.8
T_TR05_HWB	MAR01229.006	Sediment	<1	5.90	<1	16.1	<1	4.47
_TR05_MWB	MAR01229.007	Sediment	<1	3.63	<1	7.91	v 1	2.35
_TR05_LWE	MAR01229.008	Sediment	<1	2.61	<1	3.61	<1	2.13
Certified Reference	Certified Reference Material Quasimeme QPH097MS (% Rec		81	86	79	76	82	79
		QC Blank		<1	<1	<1	<1	<1

[~] Indicates result is for an In-house Reference Material as

no Certified Reference Materials are avaliable.


For full analyte name see method summaries

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01229

Issue Version 1

Customer Reference 200867 Five Estuaries MMO Analysis - Batch 2

[~]Indicates result is for an In-house Reference Material as

For full analyte name see method summaries

no Certified Reference Materials are avaliable.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01229

Issue Version

Customer Reference 200867 Five Estuaries MMO Analysis - Batch 2

		Units	mg/Kg (Dry Weight)							
		Method No	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOF/302	ASC/SOP/302	ASC/SOP/302	ASC/SOP/302	ASC/SOF/302
		Limit of Detection	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008
		Accreditation	UKAS/MMO	UKAS/MM0	UKAS/MMO	UKAS/MM0	UKAS/MM0	UKAS/MM0	UKAS/MMO	UKAS/MMO
Client Reference:	SOCOTEC Ref:	Matrix	PCB 101	PCB 105	PCB 110	PCB 118	PCB 128	PCB 138	PCB 141	PCB 149
FE1_05	MAR01229.001	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
FE2_03	MAR01229.002	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
FE4_02	MAR01229.003	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
FE4_05	MAR01229.004	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
FE7e_02	MAR01229.005	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	0.00012	<0.00008	<0.00008
T_TR05_HWB	MAR01229.006	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
T_TR05_MWB	MAR01229.007	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
T_TR05_LWE	MAR01229.008	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
Certified Reference	ce Material Quasimeme QOR14	17MS (% Recovery)	96	79	113	101	109~	11"	108	98
QC Blank			<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008

[~] Indicates result is for an In-house Reference Material as

no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01229

Issue Version

Customer Reference 200867 Five Estuaries MMO Analysis - Batch 2

		Units	mg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008
	1	Accreditation	UKAS/MM0						
Client Reference:	SOCOTEC Ref:	Matrix	PCB 151	PCB 153	PCB 156	PCB 158	PCB 170	PCB 18	PCB 180
FE1_05	MAR01229.001	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
FE2_03	MAR01229.002	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
FE4_02	MAR01229.003	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
FE4_05	MAR01229.004	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
FE7e_02	MAR01229.005	Sediment	<0.00008	<0.00008	<0.00008	<0.0008	<0.00008	<0.00008	<0.00008
T_TR05_HWB	MAR01229.006	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
T_TR05_MWB	MAR01229.007	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
T_TR05_LWE	MAR01229.008	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
Certified Reference Material Quasimeme QDR147MS (% Recovery)		47MS (% Recovery)	87	98	95	118	75	90	91
QC Blank			<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008

[~] Indicates result is for an In-house Reference Material as

no Certified Reference Materials are available.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01229

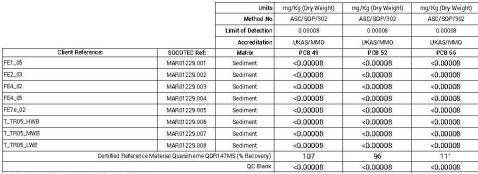
Issue Version

Customer Reference 200867 Five Estuaries MMO Analysis - Batch 2

		Units	mg/Kg (Dry Weight)						
		Method No	ASC/SOP/302						
		Limit of Detection	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008	0.00008
		Accreditation	UKAS/MM0	UKAS/MMO	UKAS/MM0	UKAS/MM0	UKAS/MM0	UKAS/MM0	UKAS/MM0
Client Reference:	SOCOTEC Ref:	Matrix	PCB 183	PCB 187	PCB 194	PCB 28	PCB 31	PCB 44	PCB 47
FE1_05	MAR01229.001	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
FE2_03	MAR01229.002	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
FE4_02	MAR01229.003	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
FE4_05	MAR01229.004	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
FE7e_02	MAR01229.005	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
T_TR05_HWB	MAR01229.006	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
T_TR05_MWB	MAR01229.007	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
T_TR05_LWE	MAR01229.008	Sediment	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008
Certified Refere	nce Material Quasimeme QOR1	47MS (% Recovery)	106~	100	81	74	116	93	107~
		QC Blank	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008	<0.00008

[~] Indicates result is for an In-house Reference Material as

no Certified Reference Materials are available.



Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01229

Issue Version

Customer Reference 200867 Five Estuaries MMO Analysis - Batch 2

[~] Indicates result is for an In-house Reference Material as

no Certified Reference Materials are avaliable.

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01229

Issue Version

Customer Reference 200867 Five Estuaries MMO Analysis - Batch 2

	1.	Units				mg/K	g (Dry Weight)									
		Method No				AS	C/SOP/302									
		Limit of Detection		0.0001												
	4	Accreditation	UKAS/MMD	UKAS/MM0	UKAS/MM0	UKAS/MM0	UKAS/MM0	UKAS/MMO	UKAS/MMO	UKAS/MMO						
Client Reference:	SOCOTEC Ref:	Matrix	AHCH	внсн	GHCH	DIELDRIN	HCB	PPTDE	PPDDE	PPDDT						
FE1_05	MAR01229.001	Sediment	< 0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	< 0.0001	<0.0001						
FE2_03	MAR01229.002	Sediment	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001						
FE4_02	MAR01229.003	Sediment	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001						
FE4_05	MAR01229.004	Sediment	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001						
E7e_02	MAR01229.005	Sediment	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001						
r_TR05_HWB	MAR01229.006	Sediment	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001						
_TR05_MWB	MAR01229.007	Sediment	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	< 0.0001						
_TR05_LWE	MAR01229.008	Sediment	<0.0001	<0.0001	< 0.0001	<0.0001	<0.0001	<0.0001	<0.0001	<0.0001						
Certified Reference Material Quasimeme QOR147MS (% Recovery)			123~	99~	122~	108	103	56	83	95~						
		QC Blank	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	< 0.0001	<0.0001	< 0.0001						

[~] Indicates result is for an In-house Reference Material as

no Certified Reference Materials are available.

For full analyte name see method summaries

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01229

Issue Version

Customer Reference 200867 Five Estuaries MMO Analysis - Batch 2

REPORT NOTES

Method Code	Sample ID	The following information should be taken into consideration when using the data contained within this report
SOCOTEC Env Chem*	MAR01229.001-008	Analysis was conducted by an internal SOCOTEC laboratory. UKAS accredited analysis by this laboratory is under UKAS number 1252.
ASC/SOP/303/304	MAR01229.004-008	Chrysene is known to coelute with Triphenylene and these peaks can not be resolved in the PAHSED UKAS accredited method. Chrysene and Triphenylene are resolved for MMO but this is currently not UKAS accredited therefore Chrysene is reported without this accreditation.

DEVIATING SAMPLE STATEMENT

Deviation Code	Deviation Definition	Sample ID	Deviation Details. The following information should be taken into consideration when using the data contained within this report
D1	Holding Time Exceeded	N/A	N/A
D2	Handling Time Exceeded	N/A	N/A
D3	Sample Contaminated through Damaged Packaging	N/A	N/A
D4	Sample Contaminated through Sampling	N/A	N/A
D5	Inappropriate Container/Packaging	N/A	N/A
D6	Damaged in Transit	N/A	N/A
D7	Insufficient Quantity of Sample	N/A	N/A
D8	Inappropriate Headspace	N/A	N/A
D9	Retained at Incorrect Temperature	N/A	N/A
D10	Lack of Date & Time of Sampling	N/A	N/A
D11	Insufficient Sample Details	N/A	N/A
D12	Sample integrity compromised or not suitable for analysis	N/A	N/A

This report shall not be reproduced, except in full, without the written permission of the laboratory Results contained herewith only apply to the samples tested

Issuing Laboratory SOCOTEC, Marine Department, Advanced Chemistry and Research, Etwall House, Bretby Business Park, Ashby Road, Burton-upon-Trent DE15 0YZ

Test Report ID MAR01229

Issue Version

Customer Reference 200867 Five Estuaries MMO Analysis - Batch 2

Sample and Fraction Size	Method Summary
Air dried	Aqua-regia extraction followed by ICP analysis.
Wet Sediment	Solvent extraction and derivatisation followed by GC-MS analysis.
Wet Sediment	Solvent extraction and clean up followed by GC-MS analysis.
Wet Sediment	Ultra-violet fluorescence spectroscopy
Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.
Air dried and seived to <2mm	Solvent extraction and clean up followed by GC-MS-MS analysis.
	Air dried Wet Sediment Wet Sediment Wet Sediment Wet Sediment Air dried and seived to < 2mm

		Analyte D	efinitions		
Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name	Analyte Abbreviation	Full Analyte name
ACENAPTH	Acenaphthene	C2N	C2-naphthalenes	THC	Total Hydrocarbon Content
ACENAPHY	Acenaphthylene	C3N	C3-naphthalenes	AHCH	alpha-Hexachlorocyclohexane
ANTHRACN	Anthracene	CHRYSENE	Chrysene	внсн	beta-Hexachlorocyclohexane
BAA	Benzo[a] anthracene	DBENZAH	Dibenzo[ah]anthracene	GHCH	gamma-Hexachlorocyclohexane
BAP	Benzo[a]pyrene	FLUORANT	Fluoranthene	DIELDRIN	Dieldrin
BBF	Benzo(b)fluoranthene	FLUORENE	Fluorene	HCE	Hexachlorobenzene
BEP	Benzo[e]pyrene	INDPYR	Indeno[1,2,3-cd]pyrene	PPDDE	p,p*-Dichlorodiphenyldichloroethylene
BENZGHIP	Benzo[ghi]perylene	NAPTH	Naphthalen e	PPDDT	p,p'-Di chlorodiphenyltrich loroethane
BKF	Benzo(k)fluoranthene	PERYLENE	Perylene	PPTDE	p,p'-Dichloro diphenyldichloro ethane
C1N	C1-naphthalenes	PHENANT	Phenanthrene	S V	t.
C1PHEN	C1-phenanthrene	PYRENE	Pyrene		

This report shall not be reproduced, except in full, without the written permission of the laboratory Results contained herewith only apply to the samples tested

Appendix F

Macrofaunal Analysis

F.1 Subtidal Grabs Macrofaunal Abundance

				FE1 01FA	FE1_02FA	FE1_03FA	FE1_04FA	FE1_05FA	FE1_06FA	FE1_07FA	FE1_08FA	FE2_01FA	FE2_02FA	FE2_03FA	FE2_04FA
Taxon	SDC	AphiaID	Authority	1184	1185	1186	1187	1188	1189	1190	1191	1192	1193	1194	1195
Cerianthus lloydii	D0632	283798	Gosse, 1859	-	-	-	-	-	-	-	-	-	-	-	-
ACTINIARIA	D0662	1360	Hertwig, 1882	-	9	-	-	-	-	-	-	-	-	-	-
Edwardsiidae	D0759		Andres, 1881	-	-	-	-	-	-	-	-	-	-	-	-
PLATYHELMINTHES	F0001		Minot, 1876	-	1	-	-	-	-	-	-	-	-	-	-
NEMERTEA	G0001	152391		1	6	1	2	1	1	-	5	-	-	-	-
Loxosoma annelidicola	K0006		(Van Beneden & Hesse, 1863)	-	-	-	-	-	-	-	-	-	-	-	-
Golfingia (Golfingia) elongata	N0014		(Keferstein, 1862)	-	-	-	-	-	-	-	-	-	-	-	-
Golfingia (Golfingia) vulgaris vulgaris	N0017		(de Blainville, 1827)	-	-	-	-	-	-	-	-	-	-	-	-
Maxmuelleria lankesteri	O0018		(Herdman, 1897)	-	-	-	-	-	-	-	-	-	-	-	-
Pisione remota	P0015		(Southern, 1914)	-	-	2	-	2	-	-	-	-	-	-	-
Subadyte pellucida	P0032		(Ehlers, 1864)	-	-	-	-	-	-	-	-	-	-	-	-
Gattyana cirrhosa	P0049	130749	(Pallas, 1766)	-	1	-	-	-	-	-	-	-	-	-	-
Malmgrenia Type A	P0050_G@		McIntosh, 1874	-	-	-	-	-	-	-	-	-	-	-	-
Malmgrenia bicki	P0050_G@		Barnich, Dietrich, Hager & Fiege, 2017	-	3	-	- 1	-	-	-	-	-	-	-	-
Malmgrenia arenicolae Malmgrenia darbouxi	P0050_G@ P0050_G@	152276	(Saint-Joseph, 1888) (Pettibone, 1993)	-	-	-	-	-	-	-	-	-	-	-	-
Harmothoe clavigera	P0050_G@		(M. Sars, 1863)	-	-	-	-	-	-	-	-	-	-	-	-
Malmarenia andreapolis	P0050_G		McIntosh, 1874	-	-	-	-	-	-	-	-	-	-	-	-
Harmothoe antilopes	P0051		McIntosh, 1876	-	-	-	-	-	-	-	-	-	-	-	-
Harmothoe extenuata	P0058		(Grube, 1840)	-	3	-	-	-	-	-	-	-	-	-	-
Harmothoe impar	P0065	130702	(Johnston, 1839)	-	-	-	-	-	-	-	-	-	-	-	-
Lepidonotus squamatus	P0082		(Linnaeus, 1758)	1	5	_	1	_	_	_	_	_	_	_	_
Polynoe scolopendrina	P0082		Savigny, 1822	-	-	-	-	-	-	-	-	-	-	-	-
Pholoe inornata	P0092	130630	Johnston, 1839	_	4	_	3	_	_	-	-	-	-	-	-
Pholoe baltica	P0095		Örsted, 1843	3	7	_	1	_	1	-	-	1	1	1	-
Sthenelais boa	P0107		(Johnston, 1833)	-	-	_	-	_	-	-	-	-	-	-	-
Eteone longa agg.	P0118		(Fabricius, 1780)	_	-	_	-	_	_	-	-	-	_	-	-
Hesionura elongata	P0110		(Southern, 1914)	_	-	1	-	_	_	-	-	-	_	-	-
Mysta barbata	P0126		Malmgren, 1865	_	_	-	_	_	_	_	_	_	_	_	_
Mysta picta	P0127		(Quatrefages, 1866)	_	_	_	_	_	_	_	_	_	_	_	_
Phyllodoce groenlandica	P0141	334506	Örsted, 1842	_	_	_	_	_	-	_	_	_	-	_	-
Phyllodoce lineata	P0142		(Claparède, 1870)	-	-	_	-	-	2	-	-	_	_	-	_
Phyllodoce longipes	P0143		Kinberg, 1866	-	-	-	-	-	-	-	-	-	-	-	-
Eulalia expusilla	P0153		Pleijel, 1987	-	-	-	-	-	-	-	-	_	-	-	-
Eulalia mustela	P0155		Pleijel, 1987	-	-	-	-	-	-	-	2	_	-	-	-
Eulalia ornata	P0156		Saint-Joseph, 1888	-	-	-	1	-	-	-	-	-	-	-	-
Eumida bahusiensis	P0164		Bergstrom, 1914	-	1	-	-	-	-	-	-	-	-	-	-
Eumida sanguinea agg.	P0167		(Örsted, 1843)	-	-	-	-	-	1	-	-	-	-	-	-
Glycera alba	P0256		(O.F. Müller, 1776)	-	-	-	-	-	-	-	-	-	-	-	-
Glycera lapidum	P0260		Quatrefages, 1866	2	6	1	-	-	2	-	3	-	1	-	-
Glycera oxycephala	P0262		Ehlers, 1887	-	-	-	-	2	-	1	-	-	-	1	-
Glycinde nordmanni	P0268		(Malmgren, 1866)	-	-	-	1	-	1	-	-	-	-	-	-
Goniada maculata	P0271		Örsted, 1843	-	-	-	-	-	-	-	-	-	-	-	-
Sphaerodorum gracilis	P0291		(Rathke, 1843)	-	-	-	-	-	-	-	-	-	-	-	-
Podarkeopsis capensis	P0319		(Day, 1963)	-	-	-	-	-	-	-	-	-	-	-	-
Syllidia armata	P0321		Quatrefages, 1866	-	-	-	-	-	-	-	-	-	-	-	-
Syllis garciai	P0351		(Campoy, 1982)	-	2	-	2	-	-	-	3	1	-	-	-
Syllis pontxioi	P0358_A	196003	San Martín & López, 2000	-	1	-	1	-	-	-	-	-	-	-	-
Syllis armillaris	P0365		(O.F. Müller, 1776)	-	-	-	-	-	-	-	-	-	-	-	-
Syllis cf. armillaris	P0365		(O.F. Müller, 1776)	-	3	-	1	-	-	-	-	-	-	-	-
Syllis variegata	P0371		Grube, 1860	-	-	-	-	-	-	-	-	-	-	-	-
Amblyosyllis spectabilis	P0374_A		(Johnston in Baird, 1861)	-	-	-	-	-	-	-	-	-	-	-	-
Eusyllis blomstrandi	P0380		Malmgren, 1867	-	-	-	-	-	-	-	-	-	-	-	-
Odontosyllis fulgurans	P0387		(Audouin & Milne Edwards, 1833)	-	-	-	-	-	1	-	-	-	-	-	-
Streptodonta pterochaeta	P0391		(Southern, 1914)	-	-	-	-	-	-	-	1	-	-	-	-
Streptosyllis campoyi	P0402_G		Brito, Núñez & San Martín, 2000	-	-	-	-	-	-	-	-	-	-	-	-
Syllides japonicus	P0409		lmajima, 1966	-	1	-	-	-	-	-	-	-	-	-	-
Parexogone hebes	P0421		(Webster & Benedict, 1884)	-	-	-	-	-	-	-	-	-	-	-	-
Exogone naidina	P0422		Örsted, 1845	-	-	-	-	-	-	-	-	-	-	-	-
Exogone verugera	P0423		(Claparède, 1868)	-	-	-	-	-	-	-	-	-	-	-	-
Erinaceusyllis erinaceus	P0426		(Claparède, 1863)	-	-	-	-	-	-	-	-	-	-	-	-
Sphaerosyllis taylori	P0430		Perkins, 1981	-	-	-	-	-	-	-	-	-	-	-	-
Myrianida	P0449		Milne Edwards, 1845	-	-	-	-	-	-	-	-	-	-	-	-
Proceraea aurantiaca	P0451_G		Claparède, 1868	-	-	-	-	-	-	-	-	-	-	-	-
Rullierinereis ancornunezi	P0458_A		Núñez & Brito, 2006	-	-	-	-	-	-	-	-	-	-	-	-
Eunereis longissima	P0475		(Johnston, 1840)	-	1	-	-	-	-	-	-	-	-	-	-
Nephtys caeca	P0496	130355	(Fabricius, 1780)	-	-	-	-	-	-	-	-	-	-	-	-

_	coc	A 12 15 A 31 - 22	FE1_01FA	FE1_02FA	FE1_03FA	FE1_04FA	FE1_05FA	FE1_06FA	FE1_07FA	FE1_08FA	FE2_01FA	FE2_02FA	FE2_03FA	FE2_04FA
Taxon	SDC	AphialD Authority	1184	1185	1186	1187	1188	1189	1190	1191	1192	1193	1194	1195
Nephtys kersivalensis	P0502	130363 McIntosh, 1908	-	-	-	-	-	-	-	-	-	-	-	-
Nephtys longosetosa	P0503	130364 Örsted, 1842	-	-	-	-	-	-	-	-	-	-	-	-
Lysidice ninetta	P0562	130071 Audouin & H Milne Edwards, 1833	-	-	-	-	-	-	-	-	-	-	-	-
Paucibranchia totospinata	P0563_B	1305625 (Lu & Fauchald, 1998)	1	-	-	-	-	-	-	-	2	-	-	-
Paucibranchia bellii	P0564	1297885 (Audouin & Milne Edwards, 1833)	-	-	-	-	-	-	-	-	-	-	-	-
Marphysa sanguinea Lysidice unicornis	P0566 P0568	130075 (Montagu, 1813) 742232 (Grube, 1840)	- 1	- 1	-	-	-	-	-	-	-	-	-	-
Hilbigneris pleijeli	P0569_F	396540 Carrera-Parra, 2006	-	-	-	-	-	-	-	-	-	-	-	-
Lumbrineris cf. cinqulata	P0572_A	130240 Ehlers, 1897	10	12	1	5	-	4	-	-	1	1	-	-
Drilonereis	P0589	129200 Claparède, 1870	-	-	-	-	-	-	-	-	-	-	-	-
Protodorvillea kefersteini	P0638	130041 (McIntosh, 1869)	-	-	1	-	-	-	-	-	-	-	-	-
Schistomeringos neglecta	P0642	130044 (Fauvel, 1923)	-	-	-	-	-	-	-	-	-	-	-	-
Schistomeringos rudolphi	P0643	154127 (Delle Chiaje, 1828)	-	2	-	3	-	-	-	-	-	-	-	-
Orbinia sertulata	P0665	130523 (Savigny, 1822)	-	-	-	-	-	-	-	-	-	-	-	-
Scoloplos armiger	P0672	130537 (Müller, 1776)	- 1	- 1	-	-	-	-	-	-	-	-	-	-
Paradoneis lyra Poecilochaetus serpens	P0699 P0718	130585 (Southern, 1914) 130711 Allen, 1904	'	1	-	2	-	-	-	-	-	-	-	-
Aonides oxycephala	P0718	131106 (Sars, 1862)	-	1	-	-	-	1	-	-	-	-	-	-
Aonides paucibranchiata	P0723	131107 Southern, 1914	-	3	1	-	1	2	1	1	2	_	_	_
Atherospio guillei	P0724_A	478336 (Laubier & Ramos, 1974)	-	-	-	-	-	-	-	-	-	-	-	-
Laonice irinae	P0731_G	1518242 Sikorski, Radashevsky & Nygren in Sikorski et al, 2021	2	4	-	-	-	-	-	2	-	-	-	-
Dipolydora Species A	P0748_A	129611 Verrill, 1881	-	-	-	-	-	-	-	-	-	-	-	-
Dipolydora Type N	P0748_A	129611 Verrill, 1881	-	-	-	-	-	-	-	-	-	-	-	-
Polydora ciliata Type A	P0752	131141 (Johnston, 1838)	1	-	-	-	-	-	-	-	-	-	-	-
Dipolydora flava	P0754	131118 (Claparède, 1870)	3	12	-	-	-	-	-	-	-	-	-	-
Dipolydora saintjosephi	P0761	131123 (Eliason, 1920)	-	2	-	-	-	-	-	-	-	-	-	-
Pseudopolydora pulchra	P0774	131169 (Carazzi, 1893)	-	-	-	-	-	-	-	-	-	-	-	-
Pygospio elegans	P0776	131170 Claparède, 1863	-	-	-	-	-	-	-	-	-	-	-	-
Scolelepis korsuni	P0777_A	131174 Sikorski, 1994	-	-	-	-	-	-	-	-	-	-	-	-
Spio Spiophanes bombyx agg.	P0787 P0794	129625 Fabricius, 1785 131187 (Claparède, 1870)	-	-	-	1	-	-	-	-	-	-	-	-
Magelona johnstoni	P0794 P0803_A	130269 Fiege, Licher & Mackie, 2000	-	-	-	-	-	-	-	-	-	-	-	-
Magelona alleni	P0803_A	130266 Wilson, 1958	-	-	-	_	-	-	-	-	-	_	-	-
Chaetopterus	P0811	129229 Cuvier, 1830	-	-	-	-	-	-	-	-	-	-	-	-
Aphelochaeta Type A	P0823	129240 Blake, 1991	1	-	-	-	-	-	-	-	-	-	-	-
Aphelochaeta marioni	P0824	129938 (Saint-Joseph, 1894)	-	-	-	-	-	-	-	-	-	-	-	-
Caulleriella alata	P0829	129943 (Southern, 1914)	-	1	-	2	-	1	-	-	1	-	-	-
Chaetozone zetlandica	P0831	336485 McIntosh, 1911	-	-	-	1	-	2	-	-	-	-	-	-
Dodecaceria	P0840	129246 Örsted, 1843	-	-	-	1	-	-	-	-	-	-	-	-
Flabelligera affinis	P0881	130103 M. Sars, 1829	1	1	-	-	-	-	-	-	-	-	-	-
Pherusa plumosa	P0885	130113 (Müller, 1776)	-	-	-	-	-	-	-	-	-	-	-	-
Mediomastus fragilis	P0919	129892 Rasmussen, 1973	-	- 7	- 1	1	-	-	-	-	-	-	- 1	-
Notomastus Leiochone	P0920 P0951_F	129220 M. Sars, 1851 146991 Grube, 1868	5 -	2	-	1	3	5	-	-	1	-	-	-
Euclymene oerstedii	P0964	130294 (Claparède, 1863)	-	-	-	-	-	-	-	-	-	-	-	-
Praxillella affinis	P0971	130322 (M. Sars in G.O. Sars, 1872)	_	3	-	_	_	5	_	-	_	_	_	_
Micromaldane ornithochaeta	P0978	130310 Mesnil, 1897	-	-	-	-	-	-	-	-	-	-	-	-
Nicomache	P0979	129357 Malmgren, 1865	-	1	-	-	-	-	-	-	-	-	-	-
Petaloproctus	P0985	129359 Quatrefages, 1866	-	-	-	-	-	-	-	-	1	-	-	-
Ophelia borealis	P0999	130491 Quatrefages, 1866	-	-	-	-	-	-	-	-	-	-	-	-
Travisia forbesii	P1007	130512 Johnston, 1840	-	-	-	-	-	-	-	-	-	-	-	-
Asclerocheilus intermedius	P1022	130974 (Saint-Joseph, 1894)	-	1	-	-	-	-	-	-	-	-	-	-
Scalibregma celticum	P1026	130979 Mackie, 1991	1	3	-	1	-	-	-	-	-	-	-	-
Scalibregma inflatum	P1027	130980 Rathke, 1843	3	7	-	6	-		-	- 1	1	-	-	-
Sclerocheilus minutus Polygordius	P1029 P1062	130982 Grube, 1863 129472 Schneider, 1868	-	-	- 6	-	-	-	-	 	-	-	-	-
Galathowenia oculata	P1062 P1093	129472 Schneider, 1868 146950 (Zachs, 1923)	-	-	-	-	-		-	-	-	-	-	-
Owenia borealis	P1093 P1097_G	329882 Koh, Bhaud & Jirkov, 2003	-	-	-	-	-		-	-	-	-	-	-
Lagis koreni	P1107_G	152367 Malmgren, 1866	2	-	-	4	-	4	-	-	1	-	-	-
Sabellaria spinulosa	P1117	130867 (Leuckart, 1849)	-	3	-	1	-	-	-	-	-	-	-	-
Melinna palmata	P1124	129808 Grube, 1870	-	-	-	-	-	-	-	-	-	-	-	-
Ampharete lindstroemi	P1139	129781 Malmgren, 1867 sensu Hessle, 1917	1	2	-	-	-	-	-	-	-	-	-	-
Amphicteis midas	P1143	129785 (Gosse, 1855)	-	-	-	-	-	-	-	-	-	-	-	-
Terebellides	P1174	129717 Sars, 1835	1	1	-	-	-	-	-	-	-	-	-	-
Loimia ramzega	P1200_G	1036014 Lavesque, Bonifácio, Londoño-Mesa, Le Garrec & Grall, 2017	-	2	-	-	-	1	-	-	1	-	-	-
Nicolea venustula	P1210	131507 (Montagu, 1819)	-	-	-	-	-	-	-	-	-	-	-	-
Amaeana trilobata	P1229	131471 (Sars, 1863)	-	1	-	-	-	-	-	-	-	-	-	-
	D4000	121500 14 1 1066								1				
Lysilla loveni Lysilla nivea	P1233 P1234	131500 Malmgren, 1866 131501 Langerhans, 1884	-	1 -	-	-	-	-	-	-	-	-	-	-

150 150				FE1 01FA	FE1_02FA	FE1_03FA	FE1_04FA	FE1_05FA	FE1_06FA	FE1_07FA	FE1_08FA	FE2_01FA	FE2_02FA	FE2_03FA	FE2_04FA
Marchester 17.00	Taxon	SDC	AphiaID Authority					_						_	_
Transport Billion Transport Bil	Polycirrus	P1235	129710 Grube, 1850												
Management P150 1987 1987 1988 1989 1	Thelepus parapari			-	3	-	1	-	-	-	-	-	-	-	-
Proceedings	Thelepus setosus			-	-	-	-	-	-	-	-	-	-	-	-
Franches Control 1918				_				-	-		-				
Committed Company Committed Comm			130948 (Langerhans, 1880)					-	-		-				
Sample 1996					-			-	-		-			-	
Figure F				_	-			-	-		-			-	
Special Content Private									6						
1965 1970					1	-		-	-	-	1	-	-	-	-
Fig. 20	Tubificoides			-	-	-	-	-	-	-	-	-	-	-	-
Anches centages (2075) 1.46/19/19/1909, 1804 (2075) 1.46/19/1909, 1809 1.46/19/1909, 1809 1.46/19/1909, 1809 1.46/19/1909, 1809 1.46/19/1909, 1809 1.46/19/1909, 1809 1.46/1909, 1809	Grania	P1524		-	-	1	1	-	-	-	-	-	-	-	-
Manufacture	Nymphon brevirostre	Q0005	150520 Hodge, 1863	-	1	-	-	-	-	-	-	-	-	-	-
Collegation	Achelia echinata		134599 Hodge, 1864	-	-	-	-	-	-	-	-	-	-	-	-
Acquisitating in principality				-	-	-	-	-	-	-	-	-	-	-	-
Formous provinging Formou				_					-						
Section Company Section Sectio								-	-				-	-	
STRACEON SPATE TOTAL T					-		-	-	-				-	-	
Miscolar Advantaged SO16 13513			100213 Brugulere, 1709					-	-						
General Content General Co									-						
Perfection performance of Performa				<u> </u>					-						
Apélement analyses S0197 201977 Norman & Scent, 1906									-						
Agenticides proceedings S0199 258-65 [Clear Wills 1931]					-	-		-	-	-	-	-	-	-	-
Intensition propriet S0179 192666 Spence Sale 1937	Apolochus neapolitanus		236495 (Della Valle, 1893)	-	-	-	-	-	-	-	-	-	-	-	-
Uniforce berindering S024 10322 Spence 84st. 1892	Leucothoe procera	S0179	102466 Spence Bate, 1857	-	-	-	-	-	-	-	-	-	-	-	-
Uniforce designary	Stenothoe marina	S0213	103166 (Spence Bate, 1857)	-	-	-	-	-	-	-	-	-	-	-	-
Include mamman	Urothoe brevicornis			-	-	-	-	-	-	-	-	-	-	-	-
Additional or	Urothoe elegans			-	-	-		-	3	-		-	-	-	-
Accidation analysetum S0272 A 102499 Dahl 1964	Urothoe marina			-	-	-	5	-	-	-	3	1	-	-	-
Systems Strat Systems Strat Systems				_					-						
Spithmentian minuta Spita 107346 Co. Sur. 1883			102495 Dahl, 1964	_				-	-						
Spithmedia perular Spital 102346 Myers & McGrath in Myers, McGrath & Costello, 1987	<u> </u>							-	-						
Spinsterial Spi34 10235 Myers & McCraft & Costello, 1987	1			_					-						
Notarrapsis patratus Sol411 48897 Costa, 1853				_					-						
Ampelisos dindema S0429 101989 (Costa 1853)				-	-	-		-	-		-	-	-	-	-
Ampellos ayainjes S048 101928 Bock, 1861 5 2 - 1				-	-	-	-	-	-	-	-	-	-	-	-
Bathyporia elegans S042 103068 Watkin 1938	Ampelisca spinipes			5	2	-	1	-	-	-	-	-	-	-	-
Seltyporeia guillamsoniana S0454 103060 (Spence Bate, 1857)	Haploops	S0446	101447 Liljeborg, 1856	-	-	-	-	-	-	-	-	-	-	-	-
Bathyporein pelaginary S0456 103066 [Spence Bate, 1857]	Bathyporeia elegans		103058 Watkin, 1938	-	-	-	-	-	-	-	-	-	-	-	-
Abludomilito obtuserd \$9498 102788 (Montagu, 1813)	Bathyporeia guilliamsoniana	S0454	103060 (Spence Bate, 1857)	-	-	-	-	-	-	-	-	-	-	-	-
Cheirocatus (female)	Bathyporeia pelagica			-	-	-	-	-	-	-	-	-	-	-	-
Othomogra othonis S0519 534781 (H. Milne Edwards, 1830) 1 - <								-	-						
Maerella tenuimana S0521 102831 (Spence Bate, 1862)									-		-				
Megamphopus comutus S0539 102377 Norman, 1869				<u> </u>					-		ı				
Gammarpsis maculata			10203 [[Sperice bate, 1002]]												
Photis Inagicaudata			102364 (Johnston, 1828)		_										
Ericthonius S056 101567 H. Milne Edwards, 1830 1 3															
Sos	Ericthonius Ericthonius			_											
Microjasa cumbrensis S0574 102439 (Stebbing & Robertson, 1891)	Jassa	S0568	101571 Leach, 1814			-		-	-	-	-	-	-	-	-
Crassicorophium crassicorne S0611 397383 (Bruzelius, 1859)	Microjassa cumbrensis	S0574	102439 (Stebbing & Robertson, 1891)	-	-			-		-		-	-	-	-
Monocorophium sextonae \$0615 \$148603 (Crawford, 1937) - 4 -	Aoridae		101368 Stebbing, 1899	-	-	-	-	-	-	-	-	-	-	-	-
Unciola crenatipalma S0621 102057 (Spence Bate, 1862)	Crassicorophium crassicorne			-	-	-	-	-	-	-	-	-	-	-	-
Dyopedos monacanthus S0628 489646 (Metzger, 1875) - - - - - - - - -	Monocorophium sextonae							-	-		-	-		-	
Pariambus typicus S0651 101857 (Krøyer, 1845)				_					-						
Phtisica marina S0657 101864 Slabber, 1769 1									-						
Pseudoprotella phasma S0659 101871 (Montagu, 1804)															
Gnathia oxyuraea \$0.796 \$1.8995 (Lilljeborg, \$1.855) \$1.8995 (Lilljeborg, \$1.855) \$1.8995 (Lilljeborg, \$1.855) \$1.8467 (Montagu, \$1.808) \$1.8995 (Montagu, \$1.804)			101004 SidDDef, 1709 101971 (Montagu 1804)					'							
Anthura gracilis \$0803 \$118467 (Montagu, 1808) - 2 -<															
Eurydice spinigera \$0855 148637 Hansen, 1890 - <td></td> <td></td> <td></td> <td>_</td> <td></td>				_											
Cleantis prismatica \$0947 \$19038 (Risso, 1826) -															
Astacilla longicornis \$0955 \$119024 (Sowerby, 1806) - </td <td>Cleantis prismatica</td> <td></td> <td>· ·</td>	Cleantis prismatica														· ·
Apseudes talpa \$1177 136285 (Montagu, 1808) -	Astacilla longicornis			-	-	-	-	-	-		-	-	-	-	-
Bodotria scorpioides S1197 110445 (Montagu, 1804)	Apseudes talpa			-	-	-	-	-	-	-	-	-	-	-	-
Diastylis bradyi (\$1248 110472 Norman 1879	Bodotria scorpioides	S1197	110445 (Montagu, 1804)	-		-	-	-	-	-	-	-	-	-	-
21031y113 110412	Diastylis bradyi	S1248	110472 Norman, 1879	-	-	-	-	-	-	-	-	-	-	-	-

			FE1_01FA	FE1_02FA	FE1_03FA	FE1_04FA	FE1_05FA	FE1_06FA	FE1_07FA	FE1_08FA	FE2_01FA	FE2_02FA	FE2_03FA	FE2_04FA
Taxon	SDC	AphiaID Authority	1184	1185	1186	1187	1188	1189	1190	1191	1192	1193	1194	1195
Diastylis rathkei	S1253	110487 (Krøyer, 1841)	-	-	-	-	-	-	-	-	-	-	-	-
Eualus cranchii	S1360	156083 (Leach, 1817 [in Leach, 1815-1875])	-	-	-	-	-	-	-	-	-	-	-	-
Axius stirhynchus	S1407	107722 Leach, 1816	-	-	-	-	-	-	-	-	-	-	-	-
Callianassa subterranea Upogebia deltaura	S1415 S1419	107729 (Montagu, 1808) 107739 (Leach, 1816)	-	-	-	-	-	-	-	-	-	-	-	-
Anapagurus hyndmanni	S1419	107739 (Leach, 1616) 107217 (Bell, 1845 [in Bell, 1844-1853])	1	1	-	-	-	-	-	-	-	-	-	-
Galathea intermedia	S1472	107150 Lilljeborg, 1851	1	1	-	-	-	-	-	-	-	-	-	-
Pisidia longicornis	S1482	107188 (Linnaeus, 1767)	1	1	-	-	-	-	-	-	-	1	-	-
Ebalia tuberosa	S1508	107301 (Pennant, 1777)	1	2	-	-	-	-	-	-	-	-	-	-
Ebalia tumefacta	S1509	107302 (Montagu, 1808)	-	-	-	-	-	-	-	-	-	-	-	-
Hyas coarctatus Macropodia rostrata	S1519 S1532	107323 Leach, 1815 [in Leach, 1815-1875] 107345 (Linnaeus, 1761)	-	1 -	-	-	-	-	-	-	-	-	-	-
Atelecyclus rotundatus	S1555	107343 (Climaeus, 1761) 107273 (Olivi, 1792)	-	-	-	- 1	-	-	-	-	-	-	-	-
Thia scutellata	S1559	107281 (Fabricius, 1793)	-	-	-	-	-	-	-	-	-	1	-	-
Pilumnus hirtellus	S1615	107418 (Linnaeus, 1761)	-	1	-	-	-	-	-	-	-	-	-	-
Leptochiton asellus	W0053	140199 (Gmelin, 1791)	3	2	-	-	-	-	-	-	-	-	-	-
Puncturella noachina	W0112	139975 (Linnaeus, 1771)	-	-	-	-	-	-	-	-	-	-	-	-
Steromphala tumida	W0161	1477356 (Montagu, 1803)	-	-	-	-	-	-	-	-	-	-	-	-
Steromphala cineraria Calliostoma zizyphinum	W0163 W0182	1039839 (Linnaeus, 1758) 141767 (Linnaeus, 1758)	-	-	-	-	-	-	-	-	-	-	-	-
Crisilla semistriata	W0182 W0348	141767 (Linnaeus, 1758) 141280 (Montagu, 1808)	-	-	-	-	-	-	-	-	-	-	-	-
Caecum glabrum	W0418	138952 (Montagu, 1803)	-	-	-	-	-	-	-	-	-	-	-	-
Crepidula fornicata	W0439	138963 (Linnaeus, 1758)	-	-	-	-	-		-	-	-	-	-	-
Euspira nitida	W0491	151894 (Donovan, 1803)	-	-	-	-	-	-	-	-	-	-	-	-
Epitonium clathratulum	W0556	139718 (Kanmacher, 1798)	-	2	-	-	-	-	-	-	-	-	-	-
Ocenebra erinaceus	W0685	140405 (Linnaeus, 1758)	-	-	-	-	-	-	-	-	-	-	-	-
Buccinum undatum Brachystomia eulimoides	W0708 W0922	138878 Linnaeus, 1758 491650 (Hanley, 1844)	-	-	-	-	-	-	-	-	-	-	-	-
Philine quadripartita	W1038_A	574582 Ascanius, 1772	-	-	-	-	-	-	-	-	-	-	-	-
Duvaucelia	W1245_F	536858 Risso, 1826	2	-	-	-	-	-	-	-	-	-	-	-
Doto	W1270	137916 Oken, 1815	-	-	-	-	-	-	-	-	-	-	-	-
Acanthodoris pilosa	W1333	140627 (Abildgaard [in Müller], 1789)	-	-	-	-	-	-	-	-	-	-	-	-
Nucula hanleyi	W1568	140588 Winckworth, 1931	2	2	-	-	-	-	-	-	-	-	-	-
Nucula nitidosa Nucula nucleus	W1569	140589 Winckworth, 1930 140590 (Linnaeus, 1758)	-	-	-	-	-	-	-	-	-	-	-	-
Striarca lactea	W1570 W1676	140590 (Linnaeus, 1758) 140571 (Linnaeus, 1758)	-	-	-	-	-	-	-	-	-	-	-	-
Glycymeris glycymeris	W1676	140025 (Linnaeus, 1758)	-	-	-	-	-	-	-	-	1	-	-	-
Mytilus edulis	W1695	140480 Linnaeus, 1758	-	-	-	-	-	-	-	-	-	-	-	-
Modiolus adriaticus	W1700	140462 Lamarck, 1819	-	-	-	-	-	-	-	-	-	-	-	-
Modiolus barbatus	W1701	140464 (Linnaeus, 1758)	-	-	-	-	-	-	-	-	-	-	-	-
Modiolula phaseolina	W1708	140461 (Philippi, 1844)	-	-	2	-	-	-	-	1	-	-	-	-
Musculus discors	W1721	140472 (Linnaeus, 1767)	-	- 1	-	-	-	-	-	-	-	-	-	-
Aequipecten opercularis Heteranomia squamula	W1773 W1809	140687 (Linnaeus, 1758) 138749 (Linnaeus, 1758)	-	-	-	-	-	-	-	-	-	-	-	-
Diplodonta rotundata	W1864	141883 (Montagu, 1803)	-	1	-	-	-	-	-	-	-	-	-	-
Kellia suborbicularis	W1875	140161 (Montagu, 1803)	-	1	-	-	-	-	-	-	-	-	-	-
Tellimya ferruginosa	W1902	146952 (Montagu, 1808)	-	-	-	-	-	-	-	-	-	-	-	-
Kurtiella bidentata	W1906	345281 (Montagu, 1803)	-	12	-	1	-	2	-	-	-	-	-	-
Epilepton clarkiae	W1911	140366 (W. Clark, 1852)	-	-	-	-	-	-	- 1	-		-	-	-
Goodallia triangularis Spisula elliptica	W1929 W1975	138831 (Montagu, 1803) 140300 (T. Brown, 1827)	- 1	- 1	-	2	- 1	-	1	1	-	2	-	-
Phaxas pellucidus	W1975 W2006	140300 (1. Brown, 1827) 140737 (Pennant, 1777)	-	-	-	-	-	-	-	-	-	-	-	-
Moerella donacina	W2000	147021 (Linnaeus, 1758)	-	5	-	1	-	1	-	-	-	-	-	-
Asbjornsenia pygmaea	W2023	879714 (Lovén, 1846)	-	-	-	-	-	-	1	-	-	-	-	-
Abra alba	W2059	141433 (W. Wood, 1802)	2	1	-	-	-	-	-	-	-	-	-	-
Abra prismatica	W2062	141436 (Montagu, 1808)	-	-	-	-	-	-	-	-	-	1	-	-
Clausinella fasciata	W2100	141909 (da Costa, 1778)	1	-	-	-	-	-	-	-	-	-	-	-
Timoclea ovata Polititapes rhomboides	W2104 W2113	141929 (Pennant, 1777) 745846 (Pennant, 1777)	-	-	-	-	-	-	-	-	-	-	-	-
Mya truncata	W2113 W2147	140431 Linnaeus, 1758	-	-	-	-	-	-	-	-	-	-	-	-
Sphenia binghami	W2152	140432 W. Turton, 1822	-	-	-	-	-	-	-	-	-	-	-	-
Varicorbula gibba	W2157	378492 (Olivi, 1792)	-	-	-	-	-	-	-	-	-	-	-	-
Rocellaria dubia	W2162	505249 (Pennant, 1777)	1	-	-	-	-	-	-	-	-	-	-	-
Hiatella	W2165	138068 Bosc, 1801	-	-	-	-	-	-	-	-	-	-	-	-
Saxicavella jeffreysi	W2172	140108 Winckworth, 1930	-	-	-	-	-	-	-	-	-	-	-	-
Barnea parva	W2183	140768 (Pennant, 1777)	-	- 1	-	-	-	-	-	-	-	-	-	-
Thracia villosiuscula Thracia distorta	W2233 W2235	141651 (MacGillivray, 1827) 141647 (Montagu, 1803)	-	1 -	-	-	-	-	-	-	-	-	-	-
Phoronis	ZA0003	128545 Wright, 1856	-	1	-	-	-	-	-	-	-	-	-	-
		1 is in inging 1000		<u> </u>										

Taxon Ophiothrix fragilis Acrocnida brachiata Amphiura filiformis Amphipholis squamata Ophiocten affinis Ophiura albida Ophiura ophiura Psammechinus miliaris Echinocyamus pusillus	ZB0124 ZB0151 ZB0154 ZB0161 ZB0167 ZB0168	125131 236130 125080	Authority 1 (Abildgaard in O.F. Müller, 1789) 0 (Montagu, 1804) 0 (O.F. Müller, 1776)	FE1_01FA 1184 1	FE1_02FA 1185	FE1_03FA 1186	FE1_04FA 1187	FE1_05FA 1188	FE1_06FA 1189	FE1_07FA 1190	FE1_08FA 1191 -	FE2_01FA 1192	FE2_02FA 1193	FE2_03FA 1194 -	FE2_04FA 1195
Acrocnida brachiata Amphiura filiformis Amphipholis squamata Ophiocten affinis Ophiura albida Ophiura ophiura Psammechinus miliaris Echinocyamus pusillus	ZB0151 ZB0154 ZB0161 ZB0167 ZB0168	236130 125080	0 (Montagu, 1804)		-	-	-	-	-	-	-	-	_	_	
Amphiura filiformis Amphipholis squamata Ophiocten affinis Ophiura albida Ophiura ophiura Psammechinus miliaris Echinocyamus pusillus	ZB0154 ZB0161 ZB0167 ZB0168	125080	(Montagu, 1804)	_											-
Amphipholis squamata Ophiocten affinis Ophiura albida Ophiura ophiura Psammechinus miliaris Echinocyamus pusillus	ZB0161 ZB0167 ZB0168	125080 125064			-	-	-	-	-	-	-	-	-	-	-
Ophiocten affinis Ophiura albida Ophiura ophiura Psammechinus miliaris Echinocyamus pusillus	ZB0167 ZB0168	125064	U (U.F. Muller, 1770)	-	-	-	-	-	-	-	-	-	-	-	-
Ophiura albida Ophiura ophiura Psammechinus miliaris Echinocyamus pusillus	ZB0168	12/1850	(Delle Chiaje, 1828) (Lütken, 1858)	2	-	-	-	-	-	-	<u>1</u>	-	-	-	-
Ophiura ophiura Psammechinus miliaris Echinocyamus pusillus		124030	Forbes, 1839	29	19	-	2	-	4	-	2	6	_	_	-
Psammechinus miliaris Echinocyamus pusillus	ZB0170		9 (Linnaeus, 1758)	-	-	-	-	-	-	-	-	-	-	-	-
	ZB0193	124319	9 (P.L.S. Müller, 1771)	2	1	-	-	-	-	-	-	-	-	-	-
	ZB0212		3 (O.F. Müller, 1776)	3	6	-	1	-	8	-	-	1	-	-	-
Echinocardium cordatum	ZB0223		2 (Pennant, 1777)	-	-	-	-	-	-	-	-	-	-	-	-
ENTEROPNEUSTA ASCIDIACEA	ZC0012 ZD0002		0 Gegenbaur, 1870 9 Blainville, 1824	14	- 8	-	-	-	-	-	-	-	-	-	-
ASCIDIACEA	ZD0002	1835	9 Biamville, 1824	14	8	-	-	-	-	-	-	-	-	-	-
			Number of taxa:	288	288	288	288	288	288	288	288	288	288	288	288
			Abundance:	130											
The following taxa (highlighted below) are m															
Leiochone	P0951_F		1 Grube, 1868	-	-	-	1	-	4	-	-	1	-	-	-
Leiochone tricirrata Leiochone johnstoni	P0951_F P0958		4 Bellan & Reys, 1967 5 McIntosh, 1915	-		-	-	-	I	-	-	-	-	-	-
Leiochone	P0950 P0951_F		1 Grube, 1868	-	2	-	1	-	5	-	-	1	-	-	-
	. 1331	. 10551			_				-						
Callipallene	Q0032		1 Flynn, 1929	-	-	-	-	-	-	-	-	-	-	-	-
Callipallene tiberii	Q0038		8 (Dohrn, 1881)	-	-	-	-	-	-	-	-	-	-	-	-
Callipallene	Q0032	134581	1 Flynn, 1929	-	-	-	-	-	-	-	-	-	-	-	-
Friethaning	COF.C1	101567	7 H. Milne Edwards, 1830		2										
Ericthonius Ericthonius punctatus	S0561 S0564		8 (Spence Bate, 1857)	- 1	1	-	-	-	-	-	-	-	-	-	-
Ericthonius	S0561		7 H. Milne Edwards, 1830	1	3	-	-	-	-	-	-	-	-	-	-
				-											
Aoridae	S0577		8 Stebbing, 1899	-	-	-	-	-	-	-	-	-	-	-	-
Leptocheirus hirsutimanus	S0588		6 (Spence Bate, 1862)	-	-	-	-	-	-	-	-	-	-	-	-
Aoridae	S0577	101368	Stebbing, 1899	-	-	-	-	-	-	-	-	-	-	-	-
PRESENCE/ABSENCE DATA Folliculinidae	A0003	1692	2 Dons, 1914	P	D	P	-	P	-	P	Р	-	P	P	Р
PORIFERA	C0001		B Grant, 1836	-	P	-	-	-	-	-	-	-	-	- -	-
Cliona agg.	C0475		6 Grant, 1826	-	P	-	Р	-	Р	-	-	-	-	-	-
Raspailiidae	C1258		2 Nardo, 1833	-	-	-	-	-	-	-	-	-	-	-	-
Haleciidae	D0389		8 Hincks, 1868	-	-	-	-	-	-	-	-	-	-	-	-
Halecium	D0390		3 Oken, 1815	-	-	-	-	-	-	-	-	-	-	-	-
Sertulariidae	D0407		4 Lamouroux, 1812 0 (Linnaeus, 1758)	Р	P	- D	P	-	-	-	-	-	-	-	-
Hydrallmania falcata Sertularella	D0424 D0427		Gray, 1848	-	- -	- P	- P	-	-	-	-	-	-	-	-
Sertularia	D0433	117234	Linnaeus, 1758	-	-	Р	-	-	-	-	-	-	-	-	-
Plumulariidae	D0447		McCrady, 1859	-	-	-	-	-	-	-	-	-	-	-	-
Nemertesia	D0462	117195	5 Lamouroux, 1812	-	-	-	-	-	-	-	-	-	-	-	-
Plumularia setacea	D0469		4 (Linnaeus, 1758)	-	-	-	-	-	-	-	-	-	-	-	-
Campanulariidae	D0491		Johnston, 1836 Lamouroux, 1812	-	-	-	-	-	-	-	-	-	-	-	-
Clytia Clytia hemisphaerica	D0501 D0503		B (Linnaeus, 1767)	-	-	-	-	-	-	-	-	-	-	-	-
Alcyonium digitatum	D0597		3 Linnaeus, 1758	P	P	-	P	-	-	-	-	-	-	-	-
Epizoanthus	D0648	100790	0 Gray, 1867	-	-	-	-	-	-	-	-	-	-	-	-
Crisia aculeata	Y0014	111690	0 Hassall, 1841	-	-	-	-	-	-	-	-	-	-	-	-
Oncousoecia dilatans	Y0025		(Johnston, 1847)	-	-	-	-	-	-	-	-	-	-	-	-
Tubuliporidae	Y0026		4 Johnston, 1837	Р	Р	-		-	-	-	-	-	-	-	-
Plagioecia patina Disporella hispida	Y0041 Y0066		9 (Lamarck, 1816) 0 (Fleming, 1828)	- Р	- D	-	- Р	-	-	-	-	-	-	-	-
Alcyonidiidae	Y0066 Y0072	110783	3 Johnston, 1837	- -	- -	-	- P	-	-	-	-	-	-	-	-
Alcyonidium	Y0073		J.V.F.Lamouroux, 1813	-	-	-	-	-	-	-	-	-	-	-	-
Alcyonidium diaphanum	Y0076	111597	7 (Hudson, 1778)	-	-	-	-	-	-	-	-	-	-	-	-
Nolella dilatata	Y0092	111632	2 (Hincks, 1860)	-	-	-	-	-	-	-	-	-	-	-	-
Vesicularia spinosa	Y0131		9 (Linnaeus, 1758)	-	-	-	-	-	-	-	-	-	-	-	-
Amathia lendigera	Y0135		9 (Linnaeus, 1758)	-	-	-		-	-	-	-	-	-	-	-
Scruparia ambigua Conopeum reticulum	Y0161 Y0172	111539	9 (d'Orbigny, 1841) 1 (Linnaeus, 1767)	-	-	-	-	-	-	-	-	-	-	-	-
Electra monostachys	Y0172 Y0177		(Linnaeus, 1767) (Busk, 1854)	-	-	-	-	-	-	-	-	-	-	-	-
Electra pilosa	Y0178		(Linnaeus, 1767)	-	-	-	-	-	-	-	Р	-	-	-	-
Aspidelectra melolontha	Y0182	111350	0 (Landsborough, 1852)	-	-	Р	-	Р	Р	Р	P	-	Р	-	-
Chartella papyracea	Y0192	111365	(Ellis & Solander, 1786)	-	-	-	-	-	-	-	-	-	-	-	-

Table Tabl	<u>.</u>	case	A 11 ID A 11		FE1_01FA	FE1_02FA	FE1_03FA	FE1_04FA	FE1_05FA	FE1_06FA	FE1_07FA	FE1_08FA	FE2_01FA	FE2_02FA	FE2_03FA	FE2_04FA
File And Desiration Company 11 1965 11 11 11 11 11 11 11	Taxon	SDC	AphiaID Authority			_										
Control purpose No.																
Section Sect					-	-	-	-	-	-	-	-	-	-	-	-
Seption Sept																
Page			111147 (Linnaeus, 1758)		-								-		-	
Changester planeted 1976					-								-		-	
Framework State			111399 Lamouroux, 1821			-						-	-		-	
Figure 1 Figure 2			111/84 (Fleming 1828)			- D						-	-		-	
Common of Common Common of Common Common of Common of Common Common of Common Common of Common o			111495 (Johnston, 1838)		-	-							-			
Management					-	Р	-	-	-	-	-	-	-	-	-	-
Processor Proc					-	-	-	-	Р	-	-	-	-	-	-	-
Scheening integrate Visit 11128 Hazeria Re Pale 1995		Y0385			Р	Р	-	-	-	-	-	-	-	-	-	-
Scientific Systems PAGE 111131 Code 180		Y0401			-	Р	-	-	-	-	-	-	-	-	-	-
Schomeriscan Control					-	-		-	-	-	-	-	-	-	-	-
Stormward Scheman 1912 2007 1912 2007 1913 1813 1814 1815 1						-	Р		-		-		-	-	-	-
Misspecial color Misspecial Misspecial					Г	Г		'		'		Г	-			
Franchistics 1000 Julies 1885							-	-		-		-	-		-	
Mappows standard MISS			111421 (Pallas, 1766)		'		-	-		-		-	-		-	
Dispersional 1923 Grant													-			
International Control of the Contr					-	'							-			
MATERIAL MADERIAL MADERIAL	2 is a small of the small of th	250071	103 133 0.0.0, 1072													
SPANCILIA NADOT 1268 Stephen, 1964		m the main data r	natrix to facilitate analysis													
Aproacticide	JUVENILES															
Polymordide	SIPUNCULA				-	-	-	-	-	-	-	-	-	-	-	-
Newodicide			938 Malmgren, 1867		-	-	-	-	-	-	-	-	-	-	-	-
Negatips PASS4			939 Kinberg, 1856		-	-	-	-	-	-	-	-	-	-	-	-
Lumbineridate					-		-	-	-	-	-	-	-	-	-	-
Cominical P0731 12965 Malangers 1867 - 1					-	1	-	-	-	-		-	-		-	
Ciranturisties PRE22					-	-	-	-	-	-		-	-		-	
Sabellidae						ı							-			
Appetition SQ43					-	-							-			
AZIDEA					-	-							-			
Callomassidade					-	-						-	-		-	
Upagehida					-	-	-	-	-	-	-	-	-	-	-	-
Pagunidae	Upogebia	S1418	107079 Leach, 1814 [in Leach, 18	13-1815]	-	-	-	-	-	-	-	-	-	-	-	-
Macropodia	Paguridae	S1445			-	-	-	-	-	-	-	-	-	-	-	-
Cantharidinee W0140 F 38217 Gray, 1867					-	-	-	-	-	-	-	-	-	-	-	-
Seromphola W0162 576164 Gray, 1847				13-1815]	-	-	-	-	-	-	-	-	-	-	-	-
Buccinidae W0702					-	-	-	-	-	-	-	-	-	-	-	-
NUDIBANACHIA NU143 NU1455 18262 Lamarck, 1799					-	-							-			
Nucula						-						-	-			
Myfildae Wife91 211 Rafinesque, 1815 2 1 - 1 - - - - - - -			1762 Cuvier, 1817			-						-	-			
Mytils W1698 138228 Linnaeus, 1758 - 3 - - - - - - - -																
Modifolus W1698 138223 Lamarck, 1799 - <	Mytilus															
Musculus W1719 138225 Roding 1798 -																
PECTINOIDEA M1767 151320 Rafinesque, 1815			138225 Röding, 1798													
Anomidae W1805			151320 Rafinesque, 1815		-	-	-	-	-	-	-	-	-	-	-	
Spisula W1973 138159 Gray, 1837	Anomiidae	W1805	214 Rafinesque, 1815		3	14		10	-	2		-	-			-
Mya W2144 138211 Linnaeus, 1758 -<	Spisula		138159 Gray, 1837		-	-	-	1	-	-	1	6	-	-	-	-
Pholadidae W2174 252 Lamarck, 1809 - - - - - - - - -					-	-	-	-	-	1	-	-	-	-	-	-
Barnea W2179 138341 Risso, 1826																
THRACIOIDEA W225 382318 Stoliczka, 1870 (1839) - 1 1																
Thracia W2227 138549 Blainville, 1824 - 1 - - - - - - - -						- 1										
Pandoridae W2248 1787 Rafinesque, 1815						1										
ASTEROIDEA ZB0018 123080 de Blainville, 1830						'										
OPHIUROIDEA ZB0105 123084 Gray, 1840 2 1 -			123080 de Rlainville 1830													
Ophiuridae ZB0165 123200 Müller & Troschel, 1840 39 4 - - 1 5 - <td< td=""><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td><td></td></td<>																
ECHINOIDEA ZB0181 123082 Leske, 1778 - <						4										
CAMARODONTA ZB0190 510518 Jackson, 1912 2 - - 1 -					i	2		-	-		-	-	-	-	-	-
SPATANGOIDA ZB0213 123106 L. Agassiz, 1840 - 1 -					2	_	_	1	_	_	_	_	_	_	-	_
PELAGIC FAUNA Description						1		<u>'</u>								
CHAETOGNATHA L0001 2081		ZB0213	123 106 L. Agassiz, 1840		-	ı		-	-	-	-	-	-	-	-	-
	PELAGIC FAUNA															
PARASITIC FAUNA	CHAETOGNATHA	L0001	2081 -		-	-	-	-	-	-	-	-	-	-	-	-
	PARASITIC FAUNA															

_	co.c	A 111 ID	A 31 - 52	FE1_01FA	FE1_02FA	FE1_03FA	FE1_04FA	FE1_05FA	FE1_06FA	FE1_07FA	FE1_08FA	FE2_01FA	FE2_02FA	FE2_03FA	FE2_04FA
Taxon	SDC	AphiaID	Authority	1184	1185	1186	1187	1188	1189	1190	1191	1192	1193	1194	1195
BOPYROIDEA	S0956	155727	Rafinesque, 1815	-	-	-	-	-	-	-	-	-	-	-	-
DAMAGED FAUNA															
Polynoinae	P0025_F	155091	Kinberg, 1856	-	-	-	-	-	-	-	-	-	-	-	-
Harmothoe	P0050		Kinberg, 1856	2	-	-	1	-	-	-	-	-	-	-	-
Paucibranchia	P0563_A		Molina-Acevedo, 2018	-	-	-	-	-	-	-	-	-	-	-	-
Aonides	P0721	129605	Claparède, 1864	-	-	-	-	-	-	-	-	-	-	-	-
Laonice	P0731	129613	Malmgren, 1867	-	-	-	-	-	-	-	-	-	-	-	-
Dipolydora	P0748_A		Verrill, 1881	-	-	-	-	-	-	-	-	-	-	-	-
Maldanidae	P0938	923	Malmgren, 1867	-	-	-	-	-	-	-	-	-	-	-	-
Euclymeninae	P0951	152232	2 Arwidsson, 1906	-	-	-	-	-	-	-	-	-	-	-	-
Nicomachinae	P0976		Arwidsson, 1906	-	1	-	-	-	-	-	-	-	-	-	-
Scalibregmatidae	P1020		Malmgren, 1867	-	-	-	-	-	-	-	-	-	-	-	-
Owenia	P1097		Delle Chiaje, 1844	-	-	-	-	-	-	-	-	-	-	-	-
Ampharetidae	P1118	981	Malmgren, 1866	-	-	-	-	-	-	-	-	-	-	-	-
Ampharetinae	P1125	152252	Malmgren, 1866	-	-	-	-	-	-	-	-	-	-	-	-
Ampharete	P1133	129155	Malmgren, 1866	-	-	-	-	-	-	-	-	-	-	-	-
Terebellinae	P1179_A	322588	Johnston, 1846	-	-	-	-	-	-	-	-	-	-	-	-
POLYCIRRINI	P1227_SF	181512	Malmgren, 1866	-	-	-	-	-	-	-	-	-	-	-	-
Sabellidae	P1257		Latreille, 1825	-	-	-	-	-	-	-	-	-	-	-	-
Serpulidae	P1324		Rafinesque, 1815	-	-	-	-	-	-	-	-	-	-	-	-
Spirobranchus	P1339	129582	Blainville, 1818	-	1	-	-	-	-	-	-	-	-	-	-
Urothoe	S0246	101789	Dana, 1852	-	-	-	-	-	-	-	-	-	-	-	-
Ampeliscidae	S0422		Krøyer, 1842	-	-	-	-	-	-	-	-	-	-	-	-
Anthuridae	S0801	118244	Leach, 1814	-	-	-	-	-	-	-	-	-	-	-	-
GASTROPODA	W0088	101	Cuvier, 1795	-	-	-	-	-	-	-	-	-	-	-	-
Bodotria	S1193	110387	Goodsir, 1843	-	-	-	-	-	-	-	-	-	-	-	-
Spisula	W1973		Gray, 1837	-	-	-	-	-	-	-	-	-	-	-	-
Abra	W2058	138474	Lamarck, 1818	-	1	-	-	-	-	-	-	-	-	-	-
Ophiuridae	ZB0165	123200	Müller & Troschel, 1840	-	-	-	-	-	-	-	-	-	-	-	-

SDC = Species Directory Code

				FE2 05FA	FE2 06FA	FE3_01FA	FE3_02FA	FE3 03FA
Taxon	SDC	AphiaID	Authority	1196	1197	1198	1199	1200
Cerianthus lloydii	D0632	283798	Gosse, 1859	-	-	-	-	-
ACTINIARIA	D0662		Hertwig, 1882	-	-	-	-	1
Edwardsiidae	D0759		Andres, 1881	-	-	-	-	-
PLATYHELMINTHES	F0001		Minot, 1876	-	-	-	-	-
NEMERTEA	G0001	152391	-	-	3	2	-	2
Loxosoma annelidicola	K0006		(Van Beneden & Hesse, 1863)	-	-	-	-	-
Golfingia (Golfingia) elongata	N0014		(Keferstein, 1862) (de Blainville, 1827)	-	-	-	-	-
Golfingia (Golfingia) vulgaris vulgaris Maxmuelleria lankesteri	N0017 O0018		(de Blainville, 1827) (Herdman, 1897)	-	-	-	-	-
Pisione remota	P0015		(Southern, 1914)	-	-	_	-	-
Subadyte pellucida	P0013		(Southern, 1914) (Ehlers, 1864)	-	-	_	-	-
Gattyana cirrhosa	P0049		(Pallas, 1766)	-	-	_	-	1
Malmgrenia Type A	P0050_G@		McIntosh, 1874	-	-	-	-	-
Malmgrenia bicki	P0050_G@		Barnich, Dietrich, Hager & Fiege, 2017	-	-	-	-	1
Malmgrenia arenicolae	P0050_G@		(Saint-Joseph, 1888)	-	-	-	-	1
Malmgrenia darbouxi	P0050_G@	863197	(Pettibone, 1993)	-	-	-	-	4
Harmothoe clavigera	P0050_G		(M. Sars, 1863)	-	-	-	-	-
Malmgrenia andreapolis	P0051		McIntosh, 1874	-	-	1	-	-
Harmothoe antilopes	P0052		McIntosh, 1876	-	-	-	-	-
Harmothoe extenuata	P0058		(Grube, 1840)	-	-	-	-	-
Harmothoe impar	P0065		(Johnston, 1839)	-	-	-	-	-
Lepidonotus squamatus	P0082		(Linnaeus, 1758)	-	-	-	-	-
Polynoe scolopendrina Pholoe inornata	P0084 P0092		Savigny, 1822 Johnston, 1839	-	-	-	-	- 1
Pholoe baltica	P0092 P0095		Örsted, 1843	-	2	5	-	2
Sthenelais boa	P0095		(Johnston, 1833)	-	-	-	-	-
Eteone longa agg.	P0107		(Fabricius, 1780)	-	1	1	-	_
Hesionura elongata	P0122		(Southern, 1914)	-	-	-	-	-
Mysta barbata	P0126		Malmgren, 1865	-	-	-	-	-
Mysta picta	P0127		(Quatrefages, 1866)	-	-	-	-	-
Phyllodoce groenlandica	P0141		Örsted, 1842	-	-	-	-	-
Phyllodoce lineata	P0142	334508	(Claparède, 1870)	-	-	-	-	-
Phyllodoce longipes	P0143		Kinberg, 1866	-	-	-	-	-
Eulalia expusilla	P0153		Pleijel, 1987	-	-	-	-	-
Eulalia mustela	P0155		Pleijel, 1987	-	-	1	-	-
Eulalia ornata	P0156		Saint-Joseph, 1888	-	-	-	-	-
Eumida bahusiensis	P0164		Bergstrom, 1914	-	-	-	-	-
Eumida sanguinea agg. Glycera alba	P0167 P0256		(Örsted, 1843) (O.F. Müller, 1776)	-	-	4	-	2
Glycera lapidum	P0256		Quatrefages, 1866	-	- 7	2	1	2
Glycera oxycephala	P0262		Ehlers, 1887	-	1	-	2	
Glycinde nordmanni	P0268		(Malmgren, 1866)	-	-	_	-	_
Goniada maculata	P0271		Örsted, 1843	-	-	-	-	-
Sphaerodorum gracilis	P0291		(Rathke, 1843)	-	-	-	-	-
Podarkeopsis capensis	P0319		(Day, 1963)	-	-	-	-	-
Syllidia armata	P0321	130198	Quatrefages, 1866	-	-	-	-	-
Syllis garciai	P0351	131431	(Campoy, 1982)	-	3	-	1	1
Syllis pontxioi	P0358_A		San Martín & López, 2000	-	1	-	1	-
Syllis armillaris	P0365		(O.F. Müller, 1776)	-	-	-	-	-
Syllis cf. armillaris	P0365		(O.F. Müller, 1776)	-	-	-	-	-
Syllis variegata	P0371		Grube, 1860	-	-	-	-	-
Amblyosyllis spectabilis	P0374_A		(Johnston in Baird, 1861)	-	-	-	-	-
Eusyllis blomstrandi Odontosyllis fulgurans	P0380 P0387		Malmgren, 1867 (Audouin & Milne Edwards, 1833)	-	-	-	-	-
Streptodonta pterochaeta	P0387 P0391		(Southern, 1914)	-	-	-	-	-
Streptosyllis campoyi	P0391 P0402_G		Brito, Núñez & San Martín, 2000	-	-	-	-	-
Syllides japonicus	P0402_G		Imajima, 1966	-	-	-	-	-
Parexogone hebes	P0421	757970	(Webster & Benedict, 1884)	-	-	-	-	-
Exogone naidina	P0422		Örsted, 1845	-	-	-	-	-
Exogone verugera	P0423		(Claparède, 1868)	-	-	-	-	-
Erinaceusyllis erinaceus	P0426		(Claparède, 1863)	-	-	-	-	-
Sphaerosyllis taylori	P0430		Perkins, 1981	-	-	-	-	-
Myrianida	P0449		Milne Edwards, 1845	-	2	-	-	4
Proceraea aurantiaca	P0451_G		Claparède, 1868	-	-	-	-	-
Rullierinereis ancornunezi	P0458_A		Núñez & Brito, 2006	-	-	-	-	-
Eunereis longissima	P0475		(Johnston, 1840)	-	1	1	-	-
Nephtys caeca	P0496		(Fabricius, 1780)	-	1	-	-	-
Nephtys cirrosa	P0498		Ehlers, 1868	1	-	-	-	-
Nephtys hombergii	P0499	130359	Savigny in Lamarck, 1818	-	-	-	-	_

				FE2 05FA	FE2 06FA	FE3_01FA	FE3 02FA	FE3 03FA
Taxon	SDC	AphiaID	Authority	1196	1197	1198	1199	1200
Nephtys kersivalensis	P0502	130363	McIntosh, 1908	-	-	-	-	-
Nephtys longosetosa	P0503		Örsted, 1842	-	-	-	-	-
Lysidice ninetta	P0562		Audouin & H Milne Edwards, 1833	-	-	1	-	-
Paucibranchia totospinata	P0563_B		(Lu & Fauchald, 1998) (Audouin & Milne Edwards, 1833)	-	-	1	-	-
Paucibranchia bellii Marphysa sanquinea	P0564 P0566		(Montagu, 1813)	-	-	-	-	-
Lysidice unicornis	P0568		(Grube, 1840)	-	1	-	-	-
Hilbigneris pleijeli	P0569_F		Carrera-Parra, 2006	-	-	-	-	-
Lumbrineris cf. cingulata	P0572_A	130240	Ehlers, 1897	-	12	10	2	15
Drilonereis	P0589		Claparède, 1870	-	-	-	-	-
Protodorvillea kefersteini	P0638		(McIntosh, 1869)	-	-	-	-	-
Schistomeringos neglecta	P0642		(Fauvel, 1923)	-	-	-	-	-
Schistomeringos rudolphi Orbinia sertulata	P0643 P0665		(Delle Chiaje, 1828) (Savigny, 1822)	-	-	-	-	-
Scoloplos armiger	P0663		(Müller, 1776)	-	-	-	-	-
Paradoneis lyra	P0699		(Southern, 1914)	-	-	-	-	-
Poecilochaetus serpens	P0718		Allen, 1904	-	2	1	-	-
Aonides oxycephala	P0722		(Sars, 1862)	-	-	2	-	-
Aonides paucibranchiata	P0723		Southern, 1914	-	19	-	3	3
Atherospio guillei	P0724_A		(Laubier & Ramos, 1974)	-	-	-	-	-
Laonice irinae Dipolydora Species A	P0731_G P0748_A		Sikorski, Radashevsky & Nygren in Sikorski et al, 2021 Verrill, 1881	-	2	-	1 -	-
Dipolydora Type N	P0748_A		Verrill, 1881	-	-	-	-	1
Polydora ciliata Type A	P0752		(Johnston, 1838)	-	-	-	-	-
Dipolydora flava	P0754		(Claparède, 1870)	-	-	-	-	-
Dipolydora saintjosephi	P0761		(Eliason, 1920)	-	-	-	-	-
Pseudopolydora pulchra	P0774		(Carazzi, 1893)	-	-	-	-	-
Pygospio elegans	P0776		Claparède, 1863	-	-	-	-	-
Scolelepis korsuni Spio	P0777_A P0787		Sikorski, 1994 Fabricius, 1785	-	1	-	-	-
Spiophanes bombyx agg.	P0787		(Claparède, 1870)	-	1	-	-	-
Magelona johnstoni	P0803_A		Fiege, Licher & Mackie, 2000	-	-	-	-	-
Magelona alleni	P0804	130266	Wilson, 1958	-	-	-	-	-
Chaetopterus	P0811		Cuvier, 1830	-	-	-	-	2
Aphelochaeta Type A	P0823		Blake, 1991	-	-	-	-	-
Aphelochaeta marioni Caulleriella alata	P0824 P0829		(Saint-Joseph, 1894) (Southern, 1914)	-	2	3	-	- 1
Chaetozone zetlandica	P0829		McIntosh, 1911	-	3	-	-	-
Dodecaceria	P0840		Örsted, 1843	-	-	-	-	-
Flabelligera affinis	P0881		M. Sars, 1829	-	-	-	-	-
Pherusa plumosa	P0885		(Müller, 1776)	-	-	-	-	-
Mediomastus fragilis	P0919		Rasmussen, 1973	-	1	-	-	-
Notomastus	P0920		M. Sars, 1851	-	2	5	-	13
Leiochone Fusiymana carstadii	P0951_F P0964		Grube, 1868 (Claparède, 1863)	-	-	-	-	2
Euclymene oerstedii Praxillella affinis	P0964 P0971		(M. Sars in G.O. Sars, 1872)	 	-	-	-	2
Micromaldane ornithochaeta	P0978		Mesnil, 1897	-	-	-	-	-
Nicomache	P0979		Malmgren, 1865	-	-	-	-	-
Petaloproctus	P0985		Quatrefages, 1866	-	-	-	-	-
Ophelia borealis	P0999		Quatrefages, 1866	-	1	-	-	-
Travisia forbesii	P1007		Johnston, 1840	-	-	-	-	-
Asclerocheilus intermedius Scalibregma celticum	P1022 P1026		(Saint-Joseph, 1894) Mackie, 1991	-	-	-	- 1	-
Scalibregma inflatum	P1026		Rathke, 1843	-	- 21	12	-	8
Sclerocheilus minutus	P1027		Grube, 1863	-	-	-	-	-
Polygordius	P1062		Schneider, 1868	-	-	-	-	-
Galathowenia oculata	P1093	146950	(Zachs, 1923)	-	-	-	-	-
Owenia borealis	P1097_G		Koh, Bhaud & Jirkov, 2003	-	-	-	-	-
Lagis koreni	P1107		Malmgren, 1866	-	6	-	-	10
Sabellaria spinulosa Malinna palmata	P1117 P1124		(Leuckart, 1849) Grube, 1870	-	9	-	-	19
Melinna palmata Ampharete lindstroemi	P1124 P1139		Malmgren, 1867 sensu Hessle, 1917	-	-	- 1	-	2
Amphicteis midas	P1143		(Gosse, 1855)	-	-	-	-	-
Terebellides	P1174		Sars, 1835	-	-	-	-	1
Loimia ramzega	P1200_G		Lavesque, Bonifácio, Londoño-Mesa, Le Garrec & Grall, 2017	-	-	3	-	4
Nicolea venustula	P1210		(Montagu, 1819)	-	-	-	-	-
Amaeana trilobata	P1229		(Sars, 1863)	-	-	-	-	-
Lysilla loveni Lysilla nivea	P1233 P1234		Malmgren, 1866 Langerhans, 1884	-	-	-	-	4
Lysiiia Inveu	Γ 143 4	131301	Jeangernans, 1004		-	_	-	4

Taxon	SDC	AphiaID	Authority	FE2_05FA	FE2_06FA	FE3_01FA	FE3_02FA	FE3_03FA
Taxon	SDC	· ·		1196	1197	1198	1199	1200
Polycirrus	P1235		Grube, 1850	-	1	-	-	4
Thelepus parapari	P1253_G		Jirkov, 2018	-	3	-	-	1
Thelepus setosus	P1255		(Quatrefages, 1866)	-	-	-	-	-
Jasmineira elegans	P1290		Saint-Joseph, 1894	-	-	-	-	-
Perkinsiana rubra	P1307		(Langerhans, 1880)	-	-	-	-	-
Pseudopotamilla	P1315		Bush, 1905	-	-	-	-	-
Sabella discifera	P1318 P1320	130964	Grube, 1874 Savigny, 1822	-	1 -	-	-	_
Sabella pavonina Spirobranchus lamarcki	P1340		(Quatrefages, 1866)	-	-	3	18	3
Spirobranchus triqueter	P1340		(Linnaeus, 1758)		1	-	2	-
Tubificoides	P1487		Lastočkin, 1937	-	-	-	-	-
Grania	P1524		Southern, 1913	-	1	-	1	-
Nymphon brevirostre	Q0005		Hodge, 1863	-	-	-	-	-
Achelia echinata	Q0015		Hodge, 1864	-	-	-	-	-
Ammothella longipes	Q0018		(Hodge, 1864)	-	-	-	-	-
Callipallene	Q0032		Flynn, 1929	-	-	-	-	-
Anoplodactylus petiolatus	Q0044		(Krøyer, 1844)	-	3	-	-	-
Verruca stroemia	R0041		(O.F. Müller, 1776)	-	-	-	-	-
Balanus crenatus	R0077		Bruguière, 1789	-	-	-	-	-
OSTRACODA	R2412		Latreille, 1802	-	-	-	-	-
Rissoides desmaresti	S0018		(Risso, 1816)	-		-	-	-
Gastrosaccus spinifer	S0044		(Goës, 1864)	1	-	-	-	-
Heteromysis (Heteromysis) microps	S0093 S0107		(G.O. Sars, 1877) Norman & Scott, 1906	-	-	-	-	-
Apherusa ovalipes Apolochus neapolitanus	S0107 S0159		(Della Valle, 1893)	-	-	-	-	-
Leucothoe procera	S0159 S0179		Spence Bate, 1857	-	-	-	-	-
Stenothoe marina	S0213		(Spence Bate, 1857)	-	-	-	-	-
Urothoe brevicornis	S0247	103700	Spence Bate, 1862	-	-	-	-	-
Urothoe elegans	S0248		Spence Bate, 1857	-	1	-	-	1
Urothoe marina	S0249		(Spence Bate, 1857)	-	3	1	-	-
Harpinia pectinata	S0257		Sars, 1891	-	-	-	-	-
Acidostoma neglectum	S0272_A		Dahl, 1964	-	-	-	-	-
Lysianassa ceratina	S0303		(Walker, 1889)	-	-	-	-	-
Iphimedia minuta	S0380		G.O. Sars, 1883	-	-	-	-	-
Iphimedia nexa	S0381		Myers & McGrath, in Myers, McGrath & Costello, 1987	-	-	-	-	-
Iphimedia spatula	S0384		Myers & McGrath, in Myers, McGrath & Costello, 1987	-	-	-	-	-
Nototropis guttatus	S0411		Costa, 1853	-	-	-	-	-
Ampelisca diadema	S0429		(Costa, 1853)	-	-	-	-	-
Ampelisca spinipes	S0438 S0446		Boeck, 1861	-	10	2	-	5
Haploops Bathyporeia elegans	S0446 S0452		Liljeborg, 1856 Watkin, 1938	-	-	-	-	-
Bathyporeia quilliamsoniana	S0454		(Spence Bate, 1857)	-	-	-	-	-
Bathyporeia pelagica	S0454		(Spence Bate, 1857)	-	-	-	-	_
Abludomelita obtusata	S0498		(Montagu, 1813)	_	-	_	2	_
Cheirocratus (female)	S0503		Norman, 1867	-	1	-	-	-
Othomaera othonis	S0519		(H. Milne Edwards, 1830)	-	-	-	-	-
Maerella tenuimana	S0521		(Spence Bate, 1862)	-	-	-	-	-
Megamphopus cornutus	S0539	102377	Norman, 1869	-	-	-	-	-
Gammaropsis maculata	S0541	102364	(Johnston, 1828)	-	-	-	-	-
Photis longicaudata	S0552		(Spence Bate & Westwood, 1862)	-	-	-	-	-
Ericthonius	S0561		H. Milne Edwards, 1830	-	-	-	-	-
Jassa	S0568		Leach, 1814	-	1	-	-	-
Microjassa cumbrensis	S0574		(Stebbing & Robertson, 1891)	-	-	-	-	-
Aoridae	S0577		Stebbing, 1899	-	-	-	1	1
Crassicorophium crassicorne	S0611		(Bruzelius, 1859)	-	-	-	-	- 1
Monocorophium sextonae Unciola crenatipalma	S0615 S0621		(Crawford, 1937) (Spence Bate, 1862)	-	-	-	-	1 -
Dyopedos monacanthus	S0621 S0628		(Metzger, 1875)	-	-	-	-	-
Pariambus typicus	S0628 S0651		(Krøyer, 1845)	-	-	-	-	1
Phtisica marina	S0657		Slabber, 1769	-	-	-	-	-
Pseudoprotella phasma	S0659		(Montagu, 1804)	-	-	-	-	-
Gnathia oxyuraea	S0796		(Lilljeborg, 1855)		-	-	-	-
Anthura gracilis	S0803		(Montagu, 1808)	-	-	-	-	-
Eurydice spinigera	S0855		Hansen, 1890	-	-	-	-	-
Cleantis prismatica	S0947		(Risso, 1826)	-	-	-	-	-
Astacilla longicornis	S0955		(Sowerby, 1806)	-	-	-	1	-
	S1177		(Montagu, 1808)	-	-	-	-	-
Apseudes talpa	311//	130203	(Worklaga, 1000)					
Apseudes talpa Bodotria scorpioides	S1177 S1197	110445	(Montagu, 1804) Norman, 1879	-	-	-	-	-

Taxon	SDC	AphiaID	Authority	FE2_05FA	FE2_06FA	FE3_01FA	FE3_02FA	FE3_03FA
Taxon	SDC	Aphilaid	Authority	1196	1197	1198	1199	1200
Diastylis rathkei	S1253		(Krøyer, 1841)	-	-	-	-	-
Eualus cranchii	S1360		(Leach, 1817 [in Leach, 1815-1875])	-	-	-	-	-
Axius stirhynchus	S1407		Leach, 1816	-	-	-	-	-
Callianassa subterranea	S1415		(Montagu, 1808)	-	2	-	-	-
Upogebia deltaura	S1419		(Leach, 1816)	-	-	-	-	1
Anapagurus hyndmanni	S1448		(Bell, 1845 [in Bell, 1844-1853])	-	-	-	-	-
Galathea intermedia	S1472		Lilljeborg, 1851	-	-	-	-	-
Pisidia longicornis	S1482		(Linnaeus, 1767)	-	3	-	-	2
Ebalia tuberosa	S1508		(Pennant, 1777)	-	-	-	-	-
Ebalia tumefacta	S1509		(Montagu, 1808)	-	-	-	-	-
Hyas coarctatus	S1519		Leach, 1815 [in Leach, 1815-1875]	-	-	-	-	-
Macropodia rostrata	S1532		(Linnaeus, 1761)	-	-	-	-	-
Atelecyclus rotundatus	S1555		(Olivi, 1792)	-	-	-	-	-
Thia scutellata	S1559		(Fabricius, 1793)	-	-	-	-	-
Pilumnus hirtellus	S1615		(Linnaeus, 1761)	-	1	-	-	-
Leptochiton asellus	W0053		(Gmelin, 1791)	-	1	-	-	2
Puncturella noachina	W0112 W0161		(Linnaeus, 1771) (Montagu, 1803)	-	-	-	-	-
Steromphala tumida				-	-	-	-	-
Steromphala cineraria	W0163 W0182		(Linnaeus, 1758) (Linnaeus, 1758)	-	-	-	-	-
Calliostoma zizyphinum Crisilla semistriata	W0182 W0348		(Montagu, 1808)	-	-	-	-	-
Caecum glabrum	W0418	120052	(Montagu, 1808)	-	-	-	-	-
Crepidula fornicata	W0418 W0439	120062	(Linnaeus, 1758)	-	-	-	-	-
Euspira nitida	W0491		(Donovan, 1803)	1	-	-	-	-
Epitonium clathratulum	W0556		(Kanmacher, 1798)	-	-	-	-	-
Ocenebra erinaceus	W0685		(Linnaeus, 1758)	-	-	-	-	
Buccinum undatum	W0708		Linnaeus, 1758	-	-	-	-	-
Brachystomia eulimoides	W0922		(Hanley, 1844)	-	-	-	-	-
Philine quadripartita	W1038_A		Ascanius, 1772	_	_	_	-	_
Duvaucelia	W1245_F		Risso, 1826	_	_	-	_	_
Doto	W1270		Oken, 1815	_	-	-	-	_
Acanthodoris pilosa	W1333		(Abildgaard [in Müller], 1789)	-	-	-	-	-
Nucula hanleyi	W1568		Winckworth, 1931	-	-	-	-	-
Nucula nitidosa	W1569		Winckworth, 1930	-	-	-	-	-
Nucula nucleus	W1570		(Linnaeus, 1758)	-	-	-	-	-
Striarca lactea	W1676		(Linnaeus, 1758)	-	-	-	-	-
Glycymeris glycymeris	W1688		(Linnaeus, 1758)	5	-	-	2	-
Mytilus edulis	W1695		Linnaeus, 1758	-	-	-	-	-
Modiolus adriaticus	W1700		Lamarck, 1819	-	-	-	-	-
Modiolus barbatus	W1701		(Linnaeus, 1758)	-	-	-	-	-
Modiolula phaseolina	W1708	140461	(Philippi, 1844)	-	-	-	-	-
Musculus discors	W1721	140472	(Linnaeus, 1767)	-	-	-	-	-
Aequipecten opercularis	W1773	140687	(Linnaeus, 1758)	-	-	-	-	-
Heteranomia squamula	W1809	138749	(Linnaeus, 1758)	-	-	-	-	-
Diplodonta rotundata	W1864	141883	(Montagu, 1803)	-	2	1	-	1
Kellia suborbicularis	W1875	140161	(Montagu, 1803)	-	-	-	-	-
Tellimya ferruginosa	W1902		(Montagu, 1808)	-	-	-	-	-
Kurtiella bidentata	W1906		(Montagu, 1803)	-	-	1	-	11
Epilepton clarkiae	W1911		(W. Clark, 1852)	-	-	-	-	-
Goodallia triangularis	W1929		(Montagu, 1803)	9	-	-	-	-
Spisula elliptica	W1975		(T. Brown, 1827)	-	-	-	-	-
Phaxas pellucidus	W2006		(Pennant, 1777)	-	-	-	-	-
Moerella donacina	W2021		(Linnaeus, 1758)	-	-	-	-	-
Asbjornsenia pygmaea	W2023		(Lovén, 1846)	1	-	1	-	-
Abra alba	W2059		(W. Wood, 1802)	-	2	1	-	1
Abra prismatica	W2062		(Montagu, 1808)	-	2	-	-	-
Clausinella fasciata	W2100		(da Costa, 1778)	-	-	-	-	-
Timoclea ovata	W2104		(Pennant, 1777)	-	-	-	-	
Polititapes rhomboides	W2113	745846	(Pennant, 1777)	-	-	-	-	-
Mya truncata	W2147		Linnaeus, 1758	-	-	-	-	-
Sphenia binghami	W2152		W. Turton, 1822	-	-	-	-	-
Varicorbula gibba	W2157		(Olivi, 1792)	-	-	-	-	-
Rocellaria dubia	W2162		(Pennant, 1777)	-	-	-	-	-
Hiatella	W2165		Bosc, 1801	-	-	-	-	
Saxicavella jeffreysi	W2172		Winckworth, 1930	-	-	-	-	-
Barnea parva	W2183		(Pennant, 1777)	-	-	-	-	
Thracia villosiuscula	W2233		(MacGillivray, 1827)	-	-	-	-	-
Thracia distorta	W2235		(Montagu, 1803)	-	-	-	-	-
Phoronis	ZA0003	128545	Wright, 1856	-	5	5	-	2

Page 197 198 199					FE2 05FA	FE2 06FA	FE3_01FA	FE3 02FA	FE3 03FA
2007-01-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1-1	Taxon	SDC	AphiaID	Authority			_		
Accordance from Number 200154 120016 120	Ophiothrix fragilis	ZB0124	125131	(Abildgaard in O.F. Müller, 1789)					
Appendent personnels	Acrocnida brachiata				-	-	-	-	-
Speciment of Speciment Spe	Amphiura filiformis				-	-	-	-	-
Political published Political Politi	Amphipholis squamata	ZB0161	125064	(Delle Chiaje, 1828)	-	12	2	-	3
Difference processors	Ophiocten affinis	ZB0167			-	-	-	-	-
Presented Profession 20013	Ophiura albida				-	7	34	1	25
Commons problem 280012 12423 OF Muller 1776 1					-	-	-	-	-
Commonwealth							·		
NEROPHESIA (2000)					1	4	5	3	6
Number of team. Page Pag									
Number of taxa:									
Abundance: 19 172 13 43 17 175 175 18 17 18 17 18 17 18 18	ASCIDIACEA	ZD0002	1839	Biainville, 1824	-	-	-	-	<u>'</u>
Abundance: 19 172 13 43 17 175 175 18 17 18 17 18 17 18 18				Number of taxa:	288	288	288	288	288
Time Coloronia sars michilinitates beloxy are necrecial materialisted dataset above									172
Post Leberhore				Abundance.	13	172	113	73	172
Post Leberhore	The following taxa (highlighted below) are r	merged in ration	alised dataset	above					
			_		-	-	-	-	-
	Leiochone tricirrata	P0951 F			-	-	-	-	2
Edechane R995 F 146991 Grube, 1868 2 2 2 2 2 34581 Pyrn 1529 - -	Leiochone johnstoni				-	-	-	-	-
Collegatione	Leiochone			,	-		-		2
Collegative Coloris Co									
Collegative Coloris Co	Callipallene				-	-	-		-
	Callipallene tiberii		134648	(Dohrn, 1881)	-	-	-	-	-
10,246	Callipallene	Q0032	134581	Flynn, 1929	-	-	-	-	-
10,246									
April	Ericthonius				-	-	-	-	-
April September Septembe	· · · · · · · · · · · · · · · · · · ·				-	-	-	-	-
	Ericthonius	S0561	101567	H. Milne Edwards, 1830	-	-	-	-	-
			101000						
Spirit S									
PRESENCE DATA								-	
Folliculnidae		30577	101368	Stebbing, 1899	-	-	-	ı	ı ı
PORIFIER C0001 558 Grant, 1836		V0005	1602	Dons 1914		_		D	_
Cliona agg				,					
Raspalliidae							P		
Halecidae					-	-		-	-
Haleclum	Haleciidae				-	-	-	-	-
Phydrallmania falcata	Halecium				-	-	-	-	-
Sertularia DoA27 117233 Gray, 1848	Sertulariidae	D0407	1614	Lamouroux, 1812	-	Р	-	-	Р
Description	Hydrallmania falcata	D0424	117890	(Linnaeus, 1758)	-	-	-	-	Р
Plumularidae	Sertularella	D0427	117233	Gray, 1848	-	-	-	-	-
Nemertesia D0462 1171795 Lamouroux, 1812 - - - - - - -	Sertularia	D0433			-	-	-	-	-
Plumularia setacea D0469 117824 (Linnaeus, 1758)	Plumulariidae				-	-	-	-	-
Campanulariidae	Nemertesia				-	-	-	-	-
Clytia					-	-	-	-	-
Clytia hemisphaerica D0503 117368 (Linnaeus, 1767)	-								-
Alcyonium digitatum D0597 125333 Linnaeus, 1758									-
Epizoanthus D0648 100790 Gray, 1867 P Crisia aculeata Y0014 111690 Hassall, 1841 P Crisia aculeata Y0014 111690 Hassall, 1841 - D Crisia aculeata Y0025 111745 Uohnston, 1847) - D Crisia aculeata Y0026 110814 Johnston, 1837 - D Crisia aculeata Y0026 110814 Johnston, 1837 - D Crisia aculeata Y0041 111719 (Lamarck, 1816) D D Crisia aculeata Y0041 111719 (Lamarck, 1816) - D D Crisia aculeata Y0041 111730 (Fleming, 1828) - D D D Crisia aculeata Y0072 110783 Johnston, 1837 - D D D Crisia aculeata Y0072 110783 Johnston, 1837 - D D D Crisia aculeata Y0072 110783 Johnston, 1837 - D D D Crisia aculeata Y0072 110783 Johnston, 1837 - D D D Crisia aculeata Y0072 111632 (Hindson, 1778) - D D D Crisia aculeata Y0074 Y0154 Y0155 (Linnaeus, 1758) - D D Crisia aculeata Y0075 Y0176 Y0182 Y0177 Y01135 (Linnaeus, 1767) D D D Crisia aculeata Y0182 Y0178 Y0178 Y0178 Y01835 (Linnaeus, 1767) D D Crisia aculeata Y0182 Y0183 Y0183 Y0185 Unadsborough, 1852) D D Crisia aculeata Y0182 Y0182 Y0185 Unadsborough, 1852) D D Crisia aculeata Y0182 Y0182 Y0185 Unadsborough, 1852) D Crisia aculeata Y0182 Y0182 Y0185									-
Crisia aculeata Y0014 111690 Hassall, 1841 -			1/2000	Grav. 1867			-		- D
Oncousoecia dilatans Y0025 111745 (Johnston, 1847) -<							-		
Tubuliporidae Y0026 110814 Johnston, 1837 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td>									
Plagioecia patina					-	-	-	-	
Disporella hispida					-	-	-	-	-
Alcyonidiidae Y0072 110783 Johnston, 1837 - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - - </td <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td></td> <td>-</td>									-
Alcyonidium Y0073 110993 J.V.F.Lamouroux, 1813 - <td>Alcyonidiidae</td> <td></td> <td></td> <td></td> <td>-</td> <td>-</td> <td>-</td> <td></td> <td>-</td>	Alcyonidiidae				-	-	-		-
Alcyonidium diaphanum Y0076 111597 (Hudson, 1778) - <td< td=""><td>Alcyonidium</td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td>-</td><td>-</td></td<>	Alcyonidium				-	-	-	-	-
Noiella dilatata Y0092 111632 (Hincks, 1860) - <td>Alcyonidium diaphanum</td> <td></td> <td>111597</td> <td>(Hudson, 1778)</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td> <td>-</td>	Alcyonidium diaphanum		111597	(Hudson, 1778)	-	-	-	-	-
Vesicularia spinosa Y0131 111669 (Linnaeus, 1758) - <td< td=""><td>Nolella dilatata</td><td></td><td></td><td></td><td>-</td><td>-</td><td>-</td><td></td><td></td></td<>	Nolella dilatata				-	-	-		
Amathia lendigera Y0135 111659 (Linnaeus, 1758) -	Vesicularia spinosa		111669	(Linnaeus, 1758)	-	-	-	-	-
Conopeum reticulum Y0172 111351 (Linnaeus, 1767) - - - - P - Electra monostachys Y0177 111354 (Busk, 1854) -<	Amathia lendigera	Y0135	111659	(Linnaeus, 1758)	-				
Electra monostachys Y0177 111354 (Busk, 1854) - - - - - - - - - - - - - - - P Electra pilosa Y0178 111355 (Linnaeus, 1767) -	Scruparia ambigua		111539	(d'Orbigny, 1841)	-	-	-		-
Electra pilosa Y0178 111355 (Linnaeus, 1767) -	Conopeum reticulum		111351	(Linnaeus, 1767)	-	-	-	Р	-
Aspidelectra melolontha Y0182 111350 (Landsborough, 1852) - P	Electra monostachys	Y0177			-	-	-	-	-
	Electra pilosa				-		-	-	Р
Chartella papyracea Y0192 111365 (Ellis & Solander, 1786)	Aspidelectra melolontha				-	Р	-	-	-
	Chartella papyracea	Y0192	111365	(Ellis & Solander, 1786)	-	-	-	-	-

Taxon	SDC	AphiaID	Authority	FE2_05FA	FE2_06FA	FE3_01FA	FE3_02FA	FE3_03FA
		'		1196	1197	1198	1199	1200
Hincksina flustroides	Y0196		(Hincks, 1877)	-	-	-	-	-
Amphiblestrum auritum	Y0222		(Hincks, 1877)	-	-	-	-	-
Crisularia plumosa	Y0246		(Pallas, 1766)	-	-	-	-	-
Bicellariella ciliata	Y0256		(Linnaeus, 1758)	-	-	-	-	-
Puellina	Y0315		Jullien, 1886	-	-	-	-	-
Hippothoa divaricata	Y0332		Lamouroux, 1821	-	-	-	Р	-
Chorizopora brongniartii	Y0344	111304	(Audouin, 1826)	-	-	-	Р	-
Escharella immersa	Y0364		(Fleming, 1828)	-	Р	-	Р	-
Escharella variolosa	Y0369		(Johnston, 1838)	-	-	-	-	-
Escharella ventricosa	Y0370		(Hassall, 1842)	-	-	-	-	-
Neolagenipora collaris	Y0376		(Norman, 1867)	-	-	-	-	-
Porella concinna	Y0385		(Busk, 1854)	-	-	-	-	-
Reptadeonella violacea	Y0401	111061	(Johnston, 1847)	-	-	-	-	Р
Schizoporella hesperia	Y0427		Hayward & Ryland, 1995	-	-	-	-	-
Escharina johnstoni	Y0440		(Quelch, 1884)	-	-	-	-	-
Schizomavella	Y0467		Canu & Bassler, 1917	-	Р	Р	Р	Р
Schizomavella (Schizomavella) linearis	Y0474		(Hassall, 1841)	-	-	-	-	-
Microporella ciliata	Y0480		(Pallas, 1766)	-	-	-	-	-
Fenestrulina	Y0482		Jullien, 1888	-	-	-	-	-
Hagiosynodos latus	Y0520		(Busk, 1856)	-	-	-	-	-
Didemnidae	ZD0041	103439	Giard, 1872	-	-	-	-	-
T. C.II.								
The following taxa have been removed from	m the main data m	natrix to facili	tate analysis					
JUVENILES	luca - :							
SIPUNCULA	N0001		Stephen, 1964	-	2	-	-	1
Aphroditidae	P0017		Malmgren, 1867	-	-	-	-	-
Polynoidae	P0025	939	Kinberg, 1856	-	1	-	-	-
Nereididae	P0458		Blainville, 1818	-	-	-	-	-
Nephtys	P0494		Cuvier, 1817	-	-	-	-	-
Lumbrineridae	P0569		Schmarda, 1861	-	-	-	-	-
Laonice	P0731		Malmgren, 1867	-	-	-	-	-
Cirratulidae	P0822		Ryckholt, 1851	-	-	-	-	1
Sabellidae	P1257		Latreille, 1825	-	-	-	-	-
Ampelisca	S0423		Krøyer, 1842	-	-	-	-	-
AXIIDEA	S1403_A		de Saint Laurent, 1979	-	-	-	-	-
Callianassidae	S1413		Dana, 1852	-	1	-	-	-
Upogebia	S1418		Leach, 1814 [in Leach, 1813-1815]	-	2	-	-	1
Paguridae	S1445		Latreille, 1802	-	-	-	-	-
Ebalia	S1504		Leach, 1817 [in Leach, 1815-1875]	-	-	-	-	-
Macropodia	S1529		Leach, 1814 [in Leach, 1813-1815]	-	-	-	-	2
Cantharidinae	W0140_F		Gray, 1857	-	-	-	-	-
Steromphala	W0162	576164	Gray, 1847	-	-	-	-	-
Buccinidae	W0702		Rafinesque, 1815	-	-	-	-	-
NUDIBRANCHIA	W1243		Cuvier, 1817	-	-	-	-	-
Nucula	W1565		Lamarck, 1799	-	-	-	-	-
Mytilidae	W1691		Rafinesque, 1815	-	-	-	-	-
Mytilus	W1693		Linnaeus, 1758	-	-	-	-	-
Modiolus	W1698		Lamarck, 1799	-	-	-	-	-
Musculus	W1719		Röding, 1798	-	-	-	-	-
PECTINOIDEA	W1767		Rafinesque, 1815	-	-	-	-	-
Anomiidae	W1805	214	Rafinesque, 1815	-	-	-	-	-
Spisula	W1973		Gray, 1837	1	1	-	-	-
Abra	W2058		Lamarck, 1818	-	-	-	-	2
Муа	W2144		Linnaeus, 1758	-	-	-	-	-
Pholadidae	W2174		Lamarck, 1809	-	1	-	-	-
Barnea	W2179		Risso, 1826	-	-	-	-	-
THRACIOIDEA	W2225		Stoliczka, 1870 (1839)	-	-	-	-	-
Thracia	W2227		Blainville, 1824	-	1	-	-	1
Pandoridae	W2248		Rafinesque, 1815	-	-	-	-	-
ASTEROIDEA	ZB0018		de Blainville, 1830	-	-	1	-	-
OPHIUROIDEA	ZB0105		Gray, 1840	-	2	1	-	7
Ophiuridae	ZB0165		Müller & Troschel, 1840	-	10	14	-	23
ECHINOIDEA	ZB0181	123082	Leske, 1778	-	-	-	-	-
CAMARODONTA	ZB0190	510518	Jackson, 1912	-	1	-	-	_
SPATANGOIDA	ZB0213	123106	L. Agassiz, 1840	-	-	-	-	-
PELAGIC FAUNA								
				1				
CHAETOGNATHA	L0001	2081	_		1	_	_	

Taxon	SDC	AphiaID	Authority	FE2_05FA	FE2_06FA	FE3_01FA	FE3_02FA	FE3_03FA
				1196	1197	1198	1199	1200
BOPYROIDEA	S0956	155727	Rafinesque, 1815	-	-	-	-	2
DAMAGED FAUNA								
Polynoinae	P0025_F		Kinberg, 1856	-	-	-	-	-
Harmothoe	P0050	129491	Kinberg, 1856	-	-	-	-	1
Paucibranchia	P0563_A		Molina-Acevedo, 2018	-	-	-	-	-
Aonides	P0721		Claparède, 1864	-	-	-	-	-
Laonice	P0731	129613	Malmgren, 1867	-	-	-	-	1
Dipolydora	P0748_A	129611	Verrill, 1881	-	-	-	-	-
Maldanidae	P0938	923	Malmgren, 1867	-	-	-	-	-
Euclymeninae	P0951	152232	Arwidsson, 1906	-	-	-	-	-
Nicomachinae	P0976	154920	Arwidsson, 1906	-	-	-	-	-
Scalibregmatidae	P1020	925	Malmgren, 1867	-	-	-	-	-
Owenia	P1097	129427	Delle Chiaje, 1844		-	-	-	-
Ampharetidae	P1118	981	Malmgren, 1866		-	-	-	-
Ampharetinae	P1125	152252	Malmgren, 1866	-	-	-	-	-
Ampharete	P1133	129155	Malmgren, 1866	-	-	-	-	-
Terebellinae	P1179_A		Johnston, 1846	-	-	-	-	-
POLYCIRRINI	P1227_SF	181512	Malmgren, 1866		-	-	-	-
Sabellidae	P1257		Latreille, 1825		-	-	-	-
Serpulidae	P1324	988	Rafinesque, 1815	-	-	-	-	-
Spirobranchus	P1339	129582	Blainville, 1818		-	-	2	
Urothoe	S0246	101789	Dana, 1852	-	-	-	-	-
Ampeliscidae	S0422	101364	Krøyer, 1842	-	-	-	-	-
Anthuridae	S0801	118244	Leach, 1814	-	-	-	-	-
GASTROPODA	W0088	101	Cuvier, 1795		-	-	-	-
Bodotria	S1193	110387	Goodsir, 1843	-	-	-	-	-
Spisula	W1973	138159	Gray, 1837	-	-	-	6	-
Abra	W2058	138474	Lamarck, 1818	-	-	-	-	
Ophiuridae	ZB0165	123200	Müller & Troschel, 1840	-	-	-	-	-

SDC = Species Directory Code

F.2 Subtidal Grabs Macrofaunal Biomass

ot				mass .01m²]		
Station	Anı	nelida	Arthropoda	Mollusca	Echinodermata	Other phyla
	Polychaeta	Oligochaeta	Artillopoda	ivioliusca	Echinodermata	Other phyla
FE1_01FA	0.6527	-	0.3215	0.1022	5.5587	0.0048
FE1_02FA	4.451	-	0.7795	7.7423	4.1737	0.0224
FE1_03FA	0.118	0.0001	-	0.0014	-	0.0006
FE1_04FA	0.6699	0.0001	2.6825	1.5619	0.1186	0.0005
FE1_05FA	0.0349	-	0.0006	1.2002	0.0015	0.0001
FE1_06FA	1.2291	-	0.0021	0.2814	0.3895	0.0035
FE1_07FA	0.0082	-	-	0.3517	-	-
FE1_08FA	0.0496	-	0.0096	0.0394	12.4324	0.0039
FE2_01FA	2.8728	-	0.0019	0.0018	0.3914	-
FE2_02FA	0.0373	-	1.0292	0.4057	-	-
FE2_03FA	0.0209	-	-	-	-	-
FE2_04FA	0.0129	-	0.0048	-	-	-
FE2_05FA	0.0177	-	0.016	0.0687	0.0963	0.0001
FE2_06FA	0.8617	0.0001	0.3989	0.13	0.4177	0.0138
FE3_01FA	3.558	-	0.0616	0.0332	3.3768	0.0051
FE3_02FA	0.2057	-	0.0053	0.0341	0.2732	
FE3_03FA	7.8689	-	1.5554	0.0573	2.1141	0.0035

Notes

Arthropoda comprises only invertebrates of the subphylum Crustacea

Other phyla included: Chordata, Cnidaria, Entoprocta, Hemichordata, Nemertea, Phoronida, Platyhelminthes and Sipuncula

0333 880 5306 fiveestuaries@rwe.com www.fiveestuaries.co.uk

Five Estuaries Offshore Wind Farm Ltd Windmill Hill Business Park Whitehill Way, Swindon, SN5 6PB Registered in England and Wales company number 12292474